
Luis G. Serrano
Foreword by Sebastian Th run

grokking

Machine
Learning

Luis G. Serrano
Foreword by Sebastian Thrun

M A N N I N G
Shelter Island

For online information and ordering of this and other Manning books, please visit

www​.manning​.com. The publisher offers discounts on this book when ordered in quantity. For more

information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road, PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form

or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the

publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in the book, and Manning Publications was aware of a

trademark claim, the designations have been printed in initial caps or all caps.

 �Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books

we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our

responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least

15 percent recycled and processed without the use of elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book was correct

at press time. The author and publisher do not assume and hereby disclaim any liability to any party for

any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result

from negligence, accident, or any other cause, or from any usage of the information herein.

Manning Publications Co.	 Development editor: Marina Michaels

  20 Baldwin Road 	 Technical development editor: Kris Athi

Shelter Island, NY 11964	 Review editor: Aleksander Dragosavljević

	 Production editor: Keri Hales

	 Copy editor: Pamela Hunt

	 Proofreader: Jason Everett

	 Technical proofreader: Karsten Strøbæk, Shirley Yap

	 Typesetter: Dennis Dalinnik

	 Cover designer: Leslie Haimes

ISBN: 9781617295911

Printed in the United States of America

www.manning.com
mailto:orders@manning.com

iii

contents

foreword	 ix

preface	 xi

acknowledgments	 xiii

about this book	 xv

about the author	 xix

1	 What is machine learning? It is common sense,
except done by a computer	 1

Do I need a heavy math and coding background
to understand machine learning?	 2

OK, so what exactly is machine learning?	 3
How do we get machines to make decisions with data?

The remember-formulate-predict framework	 6

2	 Types of machine learning 	 15

What is the difference between labeled and unlabeled data?	 17
Supervised learning: The branch of machine

learning that works with labeled data	 18
Unsupervised learning: The branch of machine learning that works with

unlabeled data	 22
What is reinforcement learning?	 29

iv	 contents

3	 Drawing a line close to our points: Linear regression	 35

The problem: We need to predict the price of a house	 37
The solution: Building a regression model for housing prices	 38
How to get the computer to draw this line: The linear regression

algorithm	 44
How do we measure our results? The error function	 60
Real-life application: Using Turi Create to predict housing prices

in India	 67
What if the data is not in a line? Polynomial regression	 69
Parameters and hyperparameters	 71
Applications of regression	 72

4	 Optimizing the training process: Underfitting, overfitting,
testing, and regularization	 77

An example of underfitting and overfitting using polynomial regression	 79
How do we get the computer to pick the right model? By testing	 81
Where did we break the golden rule, and how do we fix it?

The validation set	 84
A numerical way to decide how complex our model should be:

The model complexity graph	 85
Another alternative to avoiding overfitting: Regularization	 86
Polynomial regression, testing, and regularization with Turi Create	 95

5	 Using lines to split our points: The perceptron algorithm	 103

The problem: We are on an alien planet, and we don’t know
their language!	 106

How do we determine whether a classifier is good or bad?
The error function	 121

How to find a good classifier? The perceptron algorithm	 129
Coding the perceptron algorithm	 137
Applications of the perceptron algorithm	 142

	 contents� v

6	 A continuous approach to splitting points: Logistic classifiers	 147

Logistic classifiers: A continuous version of perceptron classifiers	 149
How to find a good logistic classifier? The logistic regression algorithm	 160
Coding the logistic regression algorithm	 166
Real-life application: Classifying IMDB reviews with Turi Create	 171
Classifying into multiple classes: The softmax function	 173

7	 How do you measure classification models? Accuracy
and its friends	 177

Accuracy: How often is my model correct?	 178
How to fix the accuracy problem? Defining different types of errors

and how to measure them	 179
A useful tool to evaluate our model: The receiver operating characteristic

(ROC) curve	 189

8	 Using probability to its maximum: The naive Bayes model	 205

Sick or healthy? A story with Bayes’ theorem as the hero	 207
Use case: Spam-detection model	 212
Building a spam-detection model with real data	 226

9	 Splitting data by asking questions: Decision trees	 233

The problem: We need to recommend apps to users according to
 what they are likely to download	 240

The solution: Building an app-recommendation system	 241
Beyond questions like yes/no	 257
The graphical boundary of decision trees	 261
Real-life application: Modeling student admissions with Scikit-Learn	 264
Decision trees for regression	 268
Applications	 272

vi	 contents

10	 Combining building blocks to gain more power:
Neural networks	 277

Neural networks with an example: A more complicated alien planet	 279
Training neural networks	 292
Coding neural networks in Keras	 299
Neural networks for regression	 308
Other architectures for more complex datasets	 309

11	 Finding boundaries with style: Support vector machines
and the kernel method	 315

Using a new error function to build better classifiers	 318
Coding support vector machines in Scikit-Learn	 324
Training SVMs with nonlinear boundaries: The kernel method	 326

12	 Combining models to maximize results: Ensemble learning	 351

With a little help from our friends	 352
Bagging: Joining some weak learners randomly to build a strong learner	 354
AdaBoost: Joining weak learners in a clever way to build a strong learner	 360
Gradient boosting: Using decision trees to build strong learners	 370
XGBoost: An extreme way to do gradient boosting	 375
Applications of ensemble methods	 384

13	 Putting it all in practice: A real-life example of data
engineering and machine learning	 387

The Titanic dataset	 388
Cleaning up our dataset: Missing values and how to deal with them	 392
Feature engineering: Transforming the features in our dataset before

training the models	 395
Training our models	 400
Tuning the hyperparameters to find the best model: Grid search	 405
Using K-fold cross-validation to reuse our data as training and validation	 408

	 contents� vii

Solutions to the exercises	 411

The math behind gradient descent: Coming down a mountain
using derivatives and slopes	 449

References	 471

index	 481

ix

foreword

Did you think machine learning is complicated and hard to master? It’s not! Read this
book!

Luis Serrano is a wizard when it comes to explaining things in plain English. I met him
first when he taught machine learning on Udacity. He made our students feel that all of
machine learning is as simple as adding or subtracting numbers. And most of all, he
made the material fun. The videos he produced for Udacity were incredibly engaging and
remain among the most liked content offered on the platform.

This book is better! Even the most fearful will enjoy the material presented herein, as
Serrano demystifies some of the best-held secrets of the machine learning society. He
takes you step by step through each of the critical algorithms and techniques in the field.
You can become a machine learning aficionado even if you dislike math. Serrano mini-
mizes the mathematical kauderwelsch that so many of us hard-core academics have come
to love, and instead relies on intuition and practical explanations.

The true goal of this book is to empower you to master these methods yourself. So the
book is full of fun exercises, in which you get to try out those mystical (and now demys-
tified) techniques yourself. Would you rather gorge on the latest Netflix TV show, or
spend your time applying machine learning to problems in computer vision and natural
language understanding? If the latter, this book is for you. I can’t express how much fun
it is to play with the latest in machine learning, and see your computer do magic under
your supervision.

And since machine learning is just about the hottest technology to emerge in the past
few years, you will now be able to leverage your new-found skills in your job. A few years
back, the New York Times proclaimed that there were only 10,000 machine learning
experts in the world, with millions of open positions. That is still the case today! Work
through this book and become a professional machine learning engineer. You are guar-
anteed to possess one of the most in-demand skills in the world today.

x	 foreword

With this book, Luis Serrano has done an admirable job explaining complex algorithms
and making them accessible to almost everyone. But he doesn’t compromise depth. Instead,
he focuses on the empowerment of the reader through a sequence of enlightening projects
and exercises. In this sense, this is not a passive read. To fully benefit from this book, you have
to work. At Udacity, we have a saying: You won’t lose weight by watching someone else exer-
cise. To grok machine learning, you have to learn to apply it to real-world problems. If you
are ready to do this, this is your book—whoever you are!

Sebastian Thrun, PhD
Founder, Udacity

Adjunct Professor, Stanford University

xi

preface

The future is here, and that future has a name: machine learning. With applications in
pretty much every industry, from medicine to banking, from self-driving cars to ordering
our coffee, the interest in machine learning has rapidly grown day after day. But what is
machine learning?

Most of the time, when I read a machine learning book or attend a machine learning
lecture, I see either a sea of complicated formulas or a sea of lines of code. For a long time,
I thought that this was machine learning, and that machine learning was reserved only for
those who had a solid knowledge of both math and computer science.

However, I began to compare machine learning with other subjects, such as music.
Musical theory and practice are complicated subjects. But when we think of music, we do
not think of scores and scales; we think of songs and melodies. And then I wondered, is
machine learning the same? Is it really just a bunch of formulas and code, or is there a
melody behind it?

Music Machine learning

Figure 1  Music is not only about scales and notes. There is a melody behind all the technicalities. In
the same way, machine learning is not only about formulas and code. There is also a melody, and in this
book, we sing it.

xii	 preface

With this in mind, I embarked on a journey to understand the melody of machine learning.
I stared at formulas and code for months. I drew many diagrams. I scribbled drawings on
napkins and showed them to my family, friends, and colleagues. I trained models on small
and large datasets. I experimented. After a while, I started listening to the melody of machine
learning. All of a sudden, some very pretty pictures started forming in my mind. I started
writing stories that go along with all the machine learning concepts. Melodies, pictures, sto-
ries—that is how I enjoy learning any topic, and it is those melodies, those pictures, and those
stories that I share with you in this book. My goal is to make machine learning fully under-
standable to every human, and this book is a step in that journey—a step that I’m happy you
are taking with me!

xiii

acknowledgments

First and foremost, I would like to thank my editor, Marina Michaels, without whom this
book wouldn’t exist. Her organization, thorough editing, and valuable input helped
shape Grokking Machine Learning. I thank Marjan Bace, Bert Bates, and the rest of the
Manning team for their support, professionalism, great ideas, and patience. I thank my
technical proofers, Shirley Yap and Karsten Strøbæk; my technical development editor,
Kris Athi; and the reviewers for giving me great feedback and correcting many of my
mistakes. I thank the production editor, Keri Hales, the copy editor, Pamela Hunt, the
graphics editor, Jennifer Houle, the proofreader, Jason Everett, and the entire production
team for their wonderful work in making this book a reality. I thank Laura Montoya for
her help with inclusive language and AI ethics, Diego Hernandez for valuable additions
to the code, and Christian Picón for his immense help with the technical aspects of the
repository and the packages.

I am grateful to Sebastian Thrun for his excellent work democratizing education.
Udacity was the platform that first gave me a voice to teach the world, and I would like to
thank the wonderful colleagues and students I met there. Alejandro Perdomo and the
Zapata Computing team deserve thanks for introducing me to the world of quantum
machine learning. Thanks also to the many wonderful leaders and colleagues I met at
Google and Apple who were instrumental in my career. Special thanks to Roberto
Cipriani and the team at Paper Inc. for letting me be part of the family and for the won-
derful job they do in the education community.

I’d like to thank my many academic mentors who have shaped my career and my way
of thinking: Mary Falk de Losada and her team at the Colombian Mathematical
Olympiads, where I first started loving mathematics and had the chance to meet great
mentors and create friendships that have lasted a lifetime; my PhD advisor, Sergey Fomin,
who was instrumental in my mathematical education and my style of teaching; my mas-
ter’s advisor, Ian Goulden; Nantel and François Bergeron, Bruce Sagan and Federico
Ardila, and the many professors and colleagues I had the opportunity to work with, in

xiv	 acknowledgments

particular those at the Universities of Waterloo, Michigan, Quebec at Montreal, and York;
and finally, Richard Hoshino and the team and students at Quest University, who helped me
test and improve the material in this book.

To all the reviewers: Al Pezewski, Albert Nogués Sabater, Amit Lamba, Bill Mitchell, Borko
Djurkovic, Daniele Andreis, Erik Sapper, Hao Liu, Jeremy R. Loscheider, Juan Gabriel Bono,
Kay Engelhardt, Krzysztof Kamyczek, Matthew Margolis, Matthias Busch, Michael Bright,
Millad Dagdoni, Polina Keselman, Tony Holdroyd, and Valerie Parham-Thompson, your
suggestions helped make this a better book.

I would like to thank my wife, Carolina Lasso, who supported me at every step of this pro-
cess with love and kindness; my mom, Cecilia Herrera, who raised me with love and always
encouraged me to follow my passions; my grandma, Maruja, for being the angel that looks at
me from heaven; my best friend, Alejandro Morales, for always being there for me; and my
friends who have enlightened my path and brightened my life, I thank you and love you with
all my heart.

YouTube, blogs, podcasts, and social media have given me the chance to connect with
thousands of brilliant souls all over the world. Curious minds with an endless passion for
learning, fellow educators who generously share their knowledge and insights, form an e-tribe
that inspires me every day and gives me the energy to continue teaching and learning. To
anyone who shares their knowledge with the world or who strives to learn every day, I thank
you.

I thank anyone out there who is striving to make this world a more fair and peaceful place.
To anyone who fights for justice, for peace, for the environment, and for equal opportunities
for every human on Earth regardless of their race, gender, place of birth, conditions, and
choices, I thank you from the bottom of my heart.

And last, but certainly not least, this book is dedicated to you, the reader. You have chosen
the path of learning, the path of improving, the path of feeling comfortable in the uncomfort-
able, and that is admirable. I hope this book is a positive step along your way to following
your passions and creating a better world.

xv

about this book

This book teaches you two things: machine learning models and how to use them.
Machine learning models come in different types. Some of them return a deterministic
answer, such as yes or no, whereas others return the answer as a probability. Some of
them use equations; others use if statements. One thing they have in common is that they
all return an answer, or a prediction. The branch of machine learning that comprises the
models that return a prediction is aptly named predictive machine learning. This is the
type of machine learning that we focus on in this book.

How this book is organized: A roadmap
Types of chapters
This book has two types of chapters. The majority of them (chapters 3, 5, 6, 8, 9, 10, 11,
and 12) each contain one type of machine learning model. The corresponding model in
each chapter is studied in detail, including examples, formulas, code, and exercises for
you to solve. Other chapters (chapters 4, 7, and 13) contain useful techniques to use to
train, evaluate, and improve machine learning models. In particular, chapter 13 contains
an end-to-end example on a real dataset, in which you’ll be able to apply all the knowl-
edge you’ve obtained in the previous chapters.

Recommended learning paths
You can use this book in two ways. The one I recommend is to go through it linearly,
chapter by chapter, because you’ll find that the alternation between learning models and
learning techniques to train them is rewarding. However, another learning path is to first
learn all the models (chapters 3, 5, 6, 8, 9, 10, 11, and 12), and then learn the techniques

xvi	 about this book

for training them (chapters 4, 7, and 13). And of course, because we all learn in different ways,
you can create your own learning path!

Appendices
This book has three appendices. Appendix A contains the solutions to each chapter’s exer-
cises. Appendix B contains some formal mathematical derivations that are useful but more
technical than the rest of the book. Appendix C contains a list of references and resources that
I recommend if you’d like to further your understanding.

Requirements and learning goals
This book provides you with a solid framework of predictive machine learning. To get the
most out of this book, you should have a visual mind and a good understanding of elemen-
tary mathematics, such as graphs of lines, equations, and basic probability. It is helpful
(although not mandatory) if you know how to code, especially in Python, because you are
given the opportunity to implement and apply several models in real datasets throughout the
book. After reading this book, you will be able to do the following:

•	 Describe the most important models in predictive machine learning and how they
work, including linear and logistic regression, naive Bayes, decision trees, neural
networks, support vector machines, and ensemble methods.

•	 Identify their strengths and weaknesses and what parameters they use.

•	 Identify how these models are used in the real world, and formulate potential ways to
apply machine learning to any particular problem you would like to solve.

•	 Learn how to optimize these models, compare them, and improve them, to build the
best machine learning models we can.

•	 Code the models, whether by hand or using an existing package, and use them to
make predictions on real datasets.

If you have a particular dataset or problem in mind, I invite you to think about how to apply
what you learn in this book to it, and to use it as a starting point to implement and experi-
ment with your own models.

I am super excited to start this journey with you, and I hope you are as excited!

Other resources
This book is self-contained. This means that aside from the requirements described earlier,
every concept that we need is introduced in the book. However, I include many references,
which I recommend you check out if you’d like to understand the concepts at a deeper level
or if you’d like to explore further topics. The references are all in appendix C and also at this
link: http://serrano.academy/grokking-machine-learning.

http://serrano.academy/grokking-machine-learning

	 about this book� xvii

In particular, several of my own resources accompany this book’s material. In my page at
http://serrano.academy, you can find a lot of materials in the form of videos, posts, and code.
The videos are also in my YouTube channel www.youtube.com/c/LuisSerrano, which I rec-
ommend you check out. As a matter of fact, most of the chapters in this book have a corre-
sponding video that I recommend you watch as you read the chapter.

We’ll be writing code
In this book, we’ll be writing code in Python. However, if your plan is to learn the concepts
without the code, you can still follow the book while ignoring the code. Nevertheless, I rec-
ommend you at least take a look at the code, so you get familiarized with it.

This book comes with a code repository, and most chapters will give you the opportunity
to code the algorithms from scratch or to use some very popular Python packages to build
models that fit given datasets. The GitHub repository is www.github.com/luisguiserrano/
manning, and I link the corresponding notebooks throughout the book. In the README of
the repository, you will find the instructions for the packages to install to run the code
successfully.

The main Python packages we use in this book are the following:

•	 NumPy: for storing arrays and performing complex mathematical calculations

•	 Pandas: for storing, manipulating, and analyzing large datasets

•	 Matplotlib: for plotting data

•	 Turi Create: for storing and manipulating data and training machine learning
models

•	 Scikit-Learn: for training machine learning models

•	 Keras (TensorFlow): for training neural networks

About the code
This book contains many examples of source code in line with normal text. In both cases,
source code is formatted in a fixed-width font like this to separate it from ordinary
text. Sometimes code is also in bold to highlight code that has changed from previous steps
in the chapter, such as when a new feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line breaks and
reworked indentation to accommodate the available page space in the book. Additionally,
comments in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings, highlighting import-
ant concepts.

http://serrano.academy
http://www.youtube.com/c/LuisSerrano
http://www.github.com/luisguiserrano/manning
http://www.github.com/luisguiserrano/manning

xviii	 about this book

The code for the examples in this book is available for download on the Manning website
(https://www.manning.com/books/grokking-machine-learning), and from GitHub at www
.github.com/luisguiserrano/manning.

liveBook discussion forum
Purchase of Grokking Machine Learning includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go to
https://livebook.manning.com/#!/book/grokking-machine-learning/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook.manning
.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the author can take place. It is not a
commitment to any specific amount of participation on the part of the author, whose contri-
bution to the forum remains voluntary (and unpaid). We suggest you try asking the author
some challenging questions lest his interest stray! The forum and the archives of previous
discussions will be accessible from the publisher’s website as long as the book is in print.

https://www.manning.com/books/grokking-machine-learning
http://www.github.com/luisguiserrano/manning
http://www.github.com/luisguiserrano/manning
https://livebook.manning.com/#!/book/grokking-machine-learning/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

xix

Luis G. Serrano is a research scientist in quantum artifi-
cial intelligence at Zapata Computing. He has worked
previously as a Machine Learning Engineer at Google, as a
Lead Artificial Intelligence Educator at Apple, and as the
Head of Content in Artificial Intelligence and Data Science
at Udacity. Luis has a PhD in mathematics from the
University of Michigan, a bachelor’s and master’s in
mathematics from the University of Waterloo, and
worked as a postdoctoral researcher at the Laboratoire de
Combinatoire et d’Informatique Mathématique at the
University of Quebec at Montreal. Luis maintains a pop-
ular YouTube channel about machine learning with over
85,000 subscribers and over 4 million views, and is a fre-
quent speaker at artificial intelligence and data science
conferences.

about the author

1

In this chapter

•	 what is machine learning

•	 is machine learning hard (spoiler: no)

•	 what do we learn in this book

•	 what is artificial intelligence, and how does it differ from

machine learning

•	 how do humans think, and how can we inject those ideas

into a machine

•	 some basic machine learning examples in real life

What is machine learning?
It is common sense, except done by a computer 1

Blue?

Oh my god, it

has learned!!

blue, blue, blue,

blue, blue, blue.

Hit enter

for machine

to learn.

2	 Chapter 1 I What is machine learning? It is common sense, except done by a computer

I am super happy to join you in your learning journey!
Welcome to this book! I’m super happy to be joining you in this journey through understanding
machine learning. At a high level, machine learning is a process in which the computer solves
problems and makes decisions in much the same way as humans.

In this book, I want to bring one message to you: machine learning is easy! You do not need to
have a heavy math and programming background to understand it. You do need some basic
mathematics, but the main ingredients are common sense, a good visual intuition, and a desire
to learn and apply these methods to anything that you are passionate about and where you want
to make an improvement in the world. I’ve had an absolute blast writing this book, because I love
growing my understanding of this topic, and I hope you have a blast reading it and diving deep
into machine learning!

Machine learning is everywhere
Machine learning is everywhere. This statement seems to be truer every day. I have a hard time
imagining a single aspect of life that cannot be improved in some way or another by machine
learning. For any job that requires repetition or looking at data and gathering conclusions,
machine learning can help. During the last few years, machine learning has seen tremendous
growth due to the advances in computing power and the ubiquity of data collection. Just to name
a few applications of machine learning: recommendation systems, image recognition, text pro-
cessing, self-driving cars, spam recognition, medical diagnoses . . . the list goes on. Perhaps you
have a goal or an area in which you want to make an impact (or maybe you are already making
it!). Very likely, machine learning can be applied to that field—perhaps that is what brought you
to this book. Let’s find out together!

Do I need a heavy math and coding background
to understand machine learning?
No. Machine learning requires imagination, creativity, and a visual mind. Machine learning is
about picking up patterns that appear in the world and using those patterns to make predictions
in the future. If you enjoy finding patterns and spotting correlations, then you can do machine
learning. If I were to tell you that I stopped smoking and am eating more vegetables and exercis-
ing, what would you predict will happen to my health in one year? Perhaps that it will improve.
If I were to tell you that I’ve switched from wearing red sweaters to green sweaters, what would
you predict will happen to my health in one year? Perhaps that it won’t change much (it may, but
not based on the information I gave you). Spotting these correlations and patterns is what
machine learning is about. The only difference is that in machine learning, we attach formulas
and numbers to these patterns to get computers to spot them.

Some mathematics and coding knowledge are needed to do machine learning, but you don’t
need to be an expert. If you are an expert in either of them, or both, you will certainly find your
skills will be rewarded. But if you are not, you can still learn machine learning and pick up the

	 OK, so what exactly is machine learning?� 3

mathematics and coding as you go. In this book, we introduce all the mathematical concepts we
need at the moment we need them. When it comes to coding, how much code you write in
machine learning is up to you. Machine learning jobs range from those who code all day long, to
those who don’t code at all. Many packages, APIs, and tools help us do machine learning with
minimal coding. Every day, machine learning is more available to everyone in the world, and I’m
glad you’ve jumped on the bandwagon!

Formulas and code are fun when seen as a language
In most machine learning books, algorithms are explained mathematically using formulas,
derivatives, and so on. Although these precise descriptions of the methods work well in practice,
a formula sitting by itself can be more confusing than illustrative. However, like a musical score,
a formula may hide a beautiful melody behind the confusion. For example, let’s look at this for-

mula:
4

1

i
i

=∑ . It looks ugly at first glance, but it represents a very simple sum, namely, 1 + 2 + 3 + 4.

And what about
1

n

ii
w

=∑ ? That is simply the sum of many (n) numbers. But when I think of a sum

of many numbers, I’d rather imagine something like 3 + 2 + 4 + 27, rather than
1

n

ii
w

=∑ . Whenever
I see a formula, I immediately have to imagine a small example of it, and then the picture is
clearer in my mind. When I see something like P(A|B), what comes to mind? That is a condi-
tional probability, so I think of some sentence along the lines of “The probability that an event A
occurs given that another event B already occurs.” For example, if A represents rain today and B
represents living in the Amazon rain forest, then the formula P(A|B) = 0.8 simply means “The
probability that it rains today given that we live in the Amazon rain forest is 80%.”

If you do love formulas, don’t worry—this book still has them. But they will appear right after
the example that illustrates them.

The same phenomenon happens with code. If we look at code from far away, it may look com-
plicated, and we might find it hard to imagine that someone could fit all of that in their head.
However, code is simply a sequence of steps, and normally each of these steps is simple. In this
book, we’ll write code, but it will be broken down into simple steps, and each step will be care-
fully explained with examples or illustrations. During the first few chapters, we will be coding
our models from scratch to understand how they work. In the later chapters, however, the models
get more complicated. For these, we will use packages such as Scikit-Learn, Turi Create, or Keras,
which have implemented most machine learning algorithms with great clarity and power.

OK, so what exactly is machine learning?
To define machine learning, first let’s define a more general term: artificial intelligence.

What is artificial intelligence?
Artificial intelligence (AI) is a general term, which we define as follows:

artificial intelligence  The set of all tasks in which a computer can make decisions

4	 Chapter 1 I What is machine learning? It is common sense, except done by a computer

In many cases, a computer makes these decisions by mimicking the ways a human makes deci-
sions. In other cases, they may mimic evolutionary processes, genetic processes, or physical pro-
cesses. But in general, any time we see a computer solving a problem by itself, be it driving a car,
finding a route between two points, diagnosing a patient, or recommending a movie, we are
looking at artificial intelligence.

What is machine learning?
Machine learning is similar to artificial intelligence, and often their definitions are confused.
Machine learning (ML) is a part of artificial intelligence, and we define it as follows:

machine learning  The set of all tasks in which a computer can make decisions based on
data

What does this mean? Allow me to illustrate with the diagram in figure 1.1.

Artificial intelligence

Machine learning

Figure 1.1  Machine learning is a part of artificial intelligence.

Let’s go back to looking at how humans make decisions. In general terms, we make decisions in
the following two ways:

•	 By using logic and reasoning

•	 By using our experience

For example, imagine that we are trying to decide what car to buy. We can look carefully at the fea-
tures of the car, such as price, fuel consumption, and navigation, and try to figure out the best combi-
nation of them that adjusts to our budget. That is using logic and reasoning. If instead we ask all our
friends what cars they own, and what they like and dislike about them, we form a list of information
and use that list to decide, then we are using experience (in this case, our friends’ experiences).

Machine learning represents the second method: making decisions using our experience. In
computer lingo, the term for experience is data. Therefore, in machine learning, computers make
decisions based on data. Thus, any time we get a computer to solve a problem or make a decision
using only data, we are doing machine learning. Colloquially, we could describe machine learn-
ing in the following way:

	 OK, so what exactly is machine learning?� 5

Machine learning is common sense, except done by a computer.
Going from solving problems using any means necessary to solving problems using only data

may feel like a small step for a computer, but it has been a huge step for humanity (figure 1.2).
Once upon a time, if we wanted to get a computer to perform a task, we had to write a program,
namely, a whole set of instructions for the computer to follow. This process is good for simple
tasks, but some tasks are too complicated for this framework. For example, consider the task of
identifying if an image contains an apple. If we start writing a computer program to develop this
task, we quickly find out that it is hard.

I make decisions
based on .experience

I make decisions
based on .data

Figure 1.2  Machine learning encompasses all the tasks in which computers make decisions based on data.
In the same way that humans make decisions based on previous experiences, computers can make decisions
based on previous data.

Let’s take a step back and ask the following question. How did we, as humans, learn how an apple
looks? The way we learned most words was not by someone explaining to us what they mean; we
learned them by repetition. We saw many objects during our childhood, and adults would tell us
what these objects were. To learn what an apple was, we saw many apples throughout the years
while hearing the word apple, until one day it clicked, and we knew what an apple was. In machine
learning, that is what we get the computer to do. We show the computer many images, and we
tell it which ones contain an apple (that constitutes our data). We repeat this process until the
computer catches the right patterns and attributes that constitute an apple. At the end of the
process, when we feed the computer a new image, it can use these patterns to determine whether
the image contains an apple. Of course, we still need to program the computer so that it catches
these patterns. For that, we have several techniques, which we will learn in this book.

And now that we’re at it, what is deep learning?
In the same way that machine learning is part of artificial intelligence, deep learning is a part of
machine learning. In the previous section, we learned we have several techniques we use to get
the computer to learn from data. One of these techniques has been performing tremendously
well, so it has its own field of study called deep learning (DL), which we define as follows and as
shown in figure 1.3:

deep learning  The field of machine learning that uses certain objects called neural networks

6	 Chapter 1 I What is machine learning? It is common sense, except done by a computer

What are neural networks? We’ll learn about them in chapter 10. Deep learning is arguably the
most used type of machine learning because it works really well. If we are looking at any of the
cutting-edge applications, such as image recognition, text generation, playing Go, or self-driving
cars, very likely we are looking at deep learning in some way or another.

Artificial intelligence
Machine learning

Deep
learning

Figure 1.3  Deep learning is a part of machine learning.

In other words, deep learning is part of machine learning, which in turn is part of artificial intel-
ligence. If this book were about transportation, then AI would be vehicles, ML would be cars, and
DL would be Ferraris.

How do we get machines to make decisions with data?
The remember-formulate-predict framework
In the previous section, we discussed that machine learning consists of a set of techniques
that we use to get the computer to make decisions based on data. In this section, we learn
what is meant by making decisions based on data and how some of these techniques work.
For this, let’s again analyze the process humans use to make decisions based on experience.
This is what is called the remember-formulate-predict framework, shown in figure 1.4. The
goal of machine learning is to teach computers how to think in the same way, following the
same framework.

How do humans think?
When we, as humans, need to make a decision based on our experience, we normally use the
following framework:

1.	 We remember past situations that were similar.

2.	 We formulate a general rule.

3.	 We use this rule to predict what may happen in the future.

	 How do we get machines to make decisions with data? The remember-formulate-predict framework � 7

For example, if the question is, “Will it rain today?,” the process to make a guess is the following:

1.	 We remember that last week it rained most of the time.

2.	 We formulate that in this place, it rains most of the time.

3.	 We predict that today it will rain.

We may be right or wrong, but at least we are trying to make the most accurate prediction we can
based on the information we have.

It rained most of the
days last week.

I think it rains most
of the time.

It will probably
rain today.

Remember Formulate Predict

Figure 1.4  The remember-formulate-predict framework is the main framework we use in this book. It consists
of three steps: (1) We remember previous data; (2) we formulate a general rule; and (3) we use that rule to make
predictions about the future.

Some machine learning lingo—models and algorithms
Before we delve into more examples that illustrate the techniques used in machine learning, let’s
define some useful terms that we use throughout this book. We know that in machine learning,
we get the computer to learn how to solve a problem using data. The way the computer solves the
problem is by using the data to build a model. What is a model? We define a model as follows:

model  A set of rules that represent our data and can be used to make predictions

We can think of a model as a representation of reality using a set of rules that mimic the existing
data as closely as possible. In the rain example in the previous section, the model was our repre-
sentation of reality, which is a world in which it rains most of the time. This is a simple world
with one rule: it rains most of the time. This representation may or may not be accurate, but
according to our data, it is the most accurate representation of reality that we can formulate. We
later use this rule to make predictions on unseen data.

An algorithm is the process that we used to build the model. In the current example, the pro-
cess is simple: we looked at how many days it rained and realized it was the majority. Of course,
machine learning algorithms can get much more complicated than that, but at the end of the day,
they are always composed of a set of steps. Our definition of algorithm follows:

8	 Chapter 1 I What is machine learning? It is common sense, except done by a computer

algorithm  A procedure, or a set of steps, used to solve a problem or perform a computa-
tion. In this book, the goal of an algorithm is to build a model.

In short, a model is what we use to make predictions, and an algorithm is what we use to build
the model. Those two definitions are easy to confuse and are often interchanged, but to keep
them clear, let’s look at a few examples.

Some examples of models that humans use
In this section we focus on a common application of machine learning: spam detection. In the
following examples, we will detect spam and non-spam emails. Non-spam emails are also
referred to as ham.

spam and ham  Spam is the common term used for junk or unwanted email, such as chain
letters, promotions, and so on. The term comes from a 1972 Monty Python sketch in which
every item in the menu of a restaurant contained Spam as an ingredient. Among software
developers, the term ham is used to refer to non-spam emails.

Example 1: An annoying email friend

In this example, our friend Bob likes to send us email. A lot of his emails are spam, in the form of
chain letters. We are starting to get a bit annoyed with him. It is Saturday, and we just got a notifi-
cation of an email from Bob. Can we guess if this email is spam or ham without looking at it?

To figure this out, we use the remember-formulate-predict method. First, let us remember,
say, the last 10 emails that we got from Bob. That is our data. We remember that six of them were
spam, and the other four were ham. From this information, we can formulate the following
model:

Model 1: Six out of every 10 emails that Bob sends us are spam.

This rule will be our model. Note, this rule does not need to be true. It could be outrageously
wrong. But given our data, it is the best that we can come up with, so we’ll live with it. Later in
this book, we learn how to evaluate models and improve them when needed.

Now that we have our rule, we can use it to predict whether the email is spam. If six out of 10
of Bob’s emails are spam, then we can assume that this new email is 60% likely to be spam and
40% likely to be ham. Judging by this rule, it’s a little safer to think that the email is spam.
Therefore, we predict that the email is spam (figure 1.5).

Again, our prediction may be wrong. We may open the email and realize it is ham. But we
have made the prediction to the best of our knowledge. This is what machine learning is all about.

You may be thinking, can we do better? We seem to be judging every email from Bob in the
same way, but there may be more information that can help us tell the spam and ham emails
apart. Let’s try to analyze the emails a little more. For example, let’s see when Bob sent the emails
to see if we find a pattern.

	 How do we get machines to make decisions with data? The remember-formulate-predict framework � 9

An email from Bob. It’s
probably spam.

Figure 1.5  A very simple machine learning model

Example 2: A seasonal annoying email friend

Let’s look more carefully at the emails that Bob sent us in the previous month. More specifically,
we’ll look at what day he sent them. Here are the emails with dates and information about being
spam or ham:

•	 Monday: Ham

•	 Tuesday: Ham

•	 Saturday: Spam

•	 Sunday: Spam

•	 Sunday: Spam

•	 Wednesday: Ham

•	 Friday: Ham

•	 Saturday: Spam

•	 Tuesday: Ham

•	 Thursday: Ham

Now things are different. Can you see a pattern? It seems that every email Bob sent during the
week is ham, and every email he sent during the weekend is spam. This makes sense—maybe
during the week he sends us work email, whereas during the weekend, he has time to send spam
and decides to roam free. So, we can formulate a more educated rule, or model, as follows:

Model 2: Every email that Bob sends during the week is ham, and those he sends during the
weekend are spam.

10	 Chapter 1 I What is machine learning? It is common sense, except done by a computer

Now let’s look at what day it is today. If it is Sunday and we just got an email from Bob, then we
can predict with great confidence that the email he sent is spam (figure 1.6). We make this pre-
diction, and without looking, we send the email to the trash and carry on with our day.

An email from Bob on
Sunda obably spam.y. It’s pr

Figure 1.6  A slightly more complex machine learning model

Example 3: Things are getting complicated!

Now, let’s say we continue with this rule, and one day we see Bob in the street, and he asks, “Why
didn’t you come to my birthday party?” We have no idea what he is talking about. It turns out last
Sunday he sent us an invitation to his birthday party, and we missed it! Why did we miss it?
Because he sent it on the weekend, and we assumed that it would be spam. It seems that we need
a better model. Let’s go back to look at Bob’s emails—this is our remember step. Let’s see if we
can find a pattern.

•	 1 KB: Ham

•	 2 KB: Ham

•	 16 KB: Spam

•	 20 KB: Spam

•	 18 KB: Spam

•	 3 KB: Ham

•	 5 KB: Ham

•	 25 KB: Spam

•	 1 KB: Ham

•	 3 KB: Ham

	 How do we get machines to make decisions with data? The remember-formulate-predict framework � 11

What do we see? It seems that the large emails tend to be spam, whereas the smaller ones tend to
be ham. This makes sense, because the spam emails frequently have large attachments.

So, we can formulate the following rule:

Model 3: Any email of size 10 KB or larger is spam, and any email of size less than 10 KB is ham.

Now that we have formulated our rule, we can make a prediction. We look at the email we
received today from Bob, and the size is 19 KB. So, we conclude that it is spam (figure 1.7).

An email from Bob with a large
attachmen obably spam.t. It’s pr

Figure 1.7  Another slightly more complex machine learning model

Is this the end of the story? Not even close.
But before we keep going, notice that to make our predictions, we used the day of the week and

the size of the email. These are examples of features. A feature is one of the most important con-
cepts in this book.

feature  Any property or characteristic of the data that the model can use to make
predictions

You can imagine that there are many more features that could indicate if an email is spam or
ham. Can you think of some more? In the next paragraphs, we’ll see a few more features.

Example 4: More?

Our two classifiers were good, because they rule out large emails and emails sent on the week-
ends. Each one of them uses exactly one of these two features. But what if we wanted a rule that
worked with both features? Rules like the following may work:

Model 4: If an email is larger than 10 KB or it is sent on the weekend, then it is classified as spam.
Otherwise, it is classified as ham.

12	 Chapter 1 I What is machine learning? It is common sense, except done by a computer

Model 5: If the email is sent during the week, then it must be larger than 15 KB to be classified as
spam. If it is sent during the weekend, then it must be larger than 5 KB to be classified as spam.
Otherwise, it is classified as ham.

Or we can get even more complicated.

Model 6: Consider the number of the day, where Monday is 0, Tuesday is 1, Wednesday is 2,
Thursday is 3, Friday is 4, Saturday is 5, and Sunday is 6. If we add the number of the day and the
size of the email (in KB), and the result is 12 or more, then the email is classified as spam (fig-
ure 1.8). Otherwise, it is classified as ham.

An email from Bob on
Sunday and with a large attachment.

It’s probably spam.

Figure 1.8  An even more complex machine learning model

All of these are valid models. We can keep creating more and more models by adding layers of
complexity or by looking at even more features. Now the question is, which is the best model?
This is where we start to need the help of a computer.

Some examples of models that machines use
The goal is to make the computer think the way we think, namely, use the remember-formu-
late-predict framework. In a nutshell, here is what the computer does in each of the steps:

Remember: Look at a huge table of data.

Formulate: Create models by going through many rules and formulas, and check which model
fits the data best.

Predict: Use the model to make predictions about future data.

This process is not much different than what we did in the previous section. The great advance-
ment here is that the computer can build models quickly by going through many formulas and

	 How do we get machines to make decisions with data? The remember-formulate-predict framework � 13

combinations of rules until it finds one that fits the existing data well. For example, we can build
a spam classifier with features such as the sender, the date and time of day, the number of words,
the number of spelling mistakes, and the appearances of certain words such as buy or win. A
model could easily look like the following logical statement:

Model 7:

•	 If the email has two or more spelling mistakes, then it is classified as spam.

•	 If it has an attachment larger than 10 KB, it is classified as spam.

•	 If the sender is not in our contact list, it is classified as spam.

•	 If it has the words buy and win, it is classified as spam.

•	 Otherwise, it is classified as ham.

It could also look like the following formula:

Model 8: If (size) + 10 (number of spelling mistakes) – (number of appearances of the word
“mom”) + 4 (number of appearances of the word “buy”) > 10, then we classify the message as spam
(figure 1.9). Otherwise, we classify it as ham.

- Email from bob@email.com
- on Sunday after 3 p.m.
- size > 10 KB
- Contains the word “buy”
- It’s probably spam.

Figure 1.9  A much more complex machine learning model, found by a computer

Now the question is, which is the best rule? The quick answer is the one that fits the data best,
although the real answer is the one that best generalizes to new data. At the end of the day, we
may end up with a complicated rule, but the computer can formulate it and use it to make pre-
dictions quickly. Our next question is, how do we build the best model? That is exactly what this
book is about.

14	 Chapter 1 I What is machine learning? It is common sense, except done by a computer

Summary
•	 Machine learning is easy! Anyone can learn it and use it, regardless of their background.

All that is needed is a desire to learn and great ideas to implement!

•	 Machine learning is tremendously useful, and it is used in most disciplines. From science
to technology to social problems and medicine, machine learning is making an impact
and will continue doing so.

•	 Machine learning is common sense, done by a computer. It mimics the ways humans
think to make decisions quickly and accurately.

•	 Just like humans make decisions based on experience, computers can make decisions
based on previous data. This is what machine learning is all about.

Machine learning uses the remember-formulate-predict framework, as follows:

•	 Remember: look at the previous data.

•	 Formulate: build a model, or a rule, based on this data.

•	 Predict: use the model to make predictions about future data.

15

In this chapter

•	 three different types of machine learning: supervised,

unsupervised, and reinforcement learning

•	 the difference between labeled and unlabeled data

•	 the difference between regression and classification,

and how they are used

Types of machine learning 2

What is our salary

increase for next year?

classifaction

help desk

Yes!

sigh! where can i find the

regression help desk?

No!

classifaction

help desk

classifaction

help desk

16	 Chapter 2 I Types of machine learning

As we learned in chapter 1, machine learning is common sense for a computer. Machine learning
roughly mimics the process by which humans make decisions based on experience, by making
decisions based on previous data. Naturally, programming computers to mimic the human
thinking process is challenging, because computers are engineered to store and process numbers,
not make decisions. This is the task that machine learning aims to tackle. Machine learning is
divided into several branches, depending on the type of decision to be made. In this chapter, we
overview some of the most important among these branches.

Machine learning has applications in many fields, such as the following:

•	 Predicting house prices based on the house’s size, number of rooms, and location

•	 Predicting today’s stock market prices based on yesterday’s prices and other factors of the
market

•	 Detecting spam and non-spam emails based on the words in the e-mail and the sender

•	 Recognizing images as faces or animals, based on the pixels in the image

•	 Processing long text documents and outputting a summary

•	 Recommending videos or movies to a user (e.g., on YouTube or Netflix)

•	 Building chatbots that interact with humans and answer questions

•	 Training self-driving cars to navigate a city by themselves

•	 Diagnosing patients as sick or healthy

•	 Segmenting the market into similar groups based on location, acquisitive power, and
interests

•	 Playing games like chess or Go

Try to imagine how we could use machine learning in each of these fields. Notice that some of
these applications are different but can be solved in a similar way. For example, predicting hous-
ing prices and predicting stock prices can be done using similar techniques. Likewise, predicting
whether an email is spam and predicting whether a credit card transaction is legitimate or fraud-
ulent can also be done using similar techniques. What about grouping users of an app based on
their similarity? That sounds different from predicting housing prices, but it could be done sim-
ilarly to grouping newspaper articles by topic. And what about playing chess? That sounds differ-
ent from all the other previous applications, but it could be like playing Go.

Machine learning models are grouped into different types, according to the way they operate.
The main three families of machine learning models are

•	 supervised learning,

•	 unsupervised learning, and

•	 reinforcement learning.

	 What is the difference between labeled and unlabeled data?� 17

In this chapter, we overview all three. However, in this book, we focus only on supervised learn-
ing because it is the most natural one to start learning and arguably the most used right now.
Look up the other types in the literature and learn about them, too, because they are all interest-
ing and useful! In the resources in appendix C, you can find some interesting links, including
several videos created by the author.

What is the difference between labeled
and unlabeled data?
What is data?
We talked about data in chapter 1, but before we go any further, let’s first establish a clear defini-
tion of what we mean by data in this book. Data is simply information. Any time we have a table
with information, we have data. Normally, each row in our table is a data point. Say, for example,
that we have a dataset of pets. In this case, each row represents a different pet. Each pet in the
table is described by certain features of that pet.

And what are features?
In chapter 1, we defined features as the properties or characteristics of the data. If our data is in
a table, the features are the columns of the table. In our pet example, the features may be size,
name, type, or weight. Features could even be the colors of the pixels in an image of the pet. This
is what describes our data. Some features are special, though, and we call them labels.

Labels?
This one is a bit less straightforward, because it depends on the context of the problem we are
trying to solve. Normally, if we are trying to predict a particular feature based on the other ones,
that feature is the label. If we are trying to predict the type of pet (e.g., cat or dog) based on infor-
mation on that pet, then the label is the type of pet (cat/dog). If we are trying to predict if the pet
is sick or healthy based on symptoms and other information, then the label is the state of the pet
(sick/healthy). If we are trying to predict the age of the pet, then the label is the age (a number).

Predictions
We have been using the concept of making predictions freely, but let’s now pin it down. The goal
of a predictive machine learning model is to guess the labels in the data. The guess that the model
makes is called a prediction.

Now that we know what labels are, we can understand there are two main types of data:
labeled and unlabeled data.

Labeled and unlabeled data
Labeled data is data that comes with labels. Unlabeled data is data that comes with no labels. An
example of labeled data is a dataset of emails that comes with a column that records whether the

18	 Chapter 2 I Types of machine learning

emails are spam or ham, or a column that records whether the email is work related. An example of
unlabeled data is a dataset of emails that has no particular column we are interested in predicting.

In figure 2.1, we see three datasets containing images of pets. The first dataset has a column
recording the type of pet, and the second dataset has a column specifying the weight of the pet.
These two are examples of labeled data. The third dataset consists only of images, with no label,
making it unlabeled data.

Labeled data Unlabeled dataLabeled data

18 pounds 14 pounds

9 pounds12 pounds

Dog Dog

CatCat

Figure 2.1  Labeled data is data that comes with a tag, or label. That label can be a type or a number. Unlabeled
data is data that comes with no tag. The dataset on the left is labeled, and the label is the type of pet (dog/cat).
The dataset in the middle is also labeled, and the label is the weight of the pet (in pounds). The dataset on the
right is unlabeled.

Of course, this definition contains some ambiguity, because depending on the problem, we
decide whether a particular feature qualifies as a label. Thus, determining if data is labeled or
unlabeled, many times, depends on the problem we are trying to solve.

Labeled and unlabeled data yield two different branches of machine learning called supervised
and unsupervised learning, which are defined in the next three sections.

Supervised learning: The branch of machine
learning that works with labeled data
We can find supervised learning in some of the most common applications nowadays, including
image recognition, various forms of text processing, and recommendation systems. Supervised
learning is a type of machine learning that uses labeled data. In short, the goal of a supervised
learning model is to predict (guess) the labels.

In the example in figure 2.1, the dataset on the left contains images of dogs and cats, and the labels
are “dog” and “cat.” For this dataset, the machine learning model would use previous data to predict
the label of new data points. This means, if we bring in a new image without a label, the model will
guess whether the image is of a dog or a cat, thus predicting the label of the data point (figure 2.2).

	 Supervised learning: The branch of machine learning that works with labeled data � 19

What am I?

I think you’re
a dog.

Supervised learning model

Figure 2.2  A supervised learning model predicts the label of a new data point. In this case, the data point
corresponds to a dog, and the supervised learning algorithm is trained to predict that this data point does,
indeed, correspond to a dog.

If you recall from chapter 1, the framework we learned for making a decision was remember-for-
mulate-predict. This is precisely how supervised learning works. The model first remembers the
dataset of dogs and cats. Then it formulates a model, or a rule, for what it believes constitutes a
dog and a cat. Finally, when a new image comes in, the model makes a prediction about what it
thinks the label of the image is, namely, a dog or a cat (figure 2.3).

Supervised learning model Supervised learning model Supervised learning model

What
am I?

Remember Formulate Predict

I think you’re
a dog.

Dog: Bigger ears,
wags tail

Cats: Whiskers, furDog Dog Cat Cat

Figure 2.3  A supervised learning model follows the remember-formulate-predict framework from chapter 1.
First, it remembers the dataset. Then, it formulates rules for what would constitute a dog and a cat. Finally, it
predicts whether a new data point is a dog or a cat.

Now, notice that in figure 2.1, we have two types of labeled datasets. In the dataset in the middle,
each data point is labeled with the weight of the animal. In this dataset, the labels are numbers. In
the dataset on the left, each data point is labeled with the type of animal (dog or cat). In this dataset,

20	 Chapter 2 I Types of machine learning

the labels are states. Numbers and states are the two types of data that we’ll encounter in supervised
learning models. We call the first type numerical data and the second type categorical data.

numerical data  is any type of data that uses numbers such as 4, 2.35, or –199. Examples of
numerical data are prices, sizes, or weights.

categorical data  is any type of data that uses categories, or states, such as male/female or
cat/dog/bird. For this type of data, we have a finite set of categories to associate to each of
the data points.

This gives rise to the following two types of supervised learning models:

regression models  are the types of models that predict numerical data. The output of a
regression model is a number, such as the weight of the animal.

classification models  are the types of models that predict categorical data. The output of a
classification model is a category, or a state, such as the type of animal (cat or dog).

Let’s look at two examples of supervised learning models, one regression and one classification.

Model 1: housing prices model (regression). In this model, each data point is a house. The label
of each house is its price. Our goal is that when a new house (data point) comes on the market,
we would like to predict its label, namely, its price.

Model 2: email spam–detection model (classification). In this model, each data point is an email.
The label of each email is either spam or ham. Our goal is that when a new email (data point) comes
into our inbox, we would like to predict its label, namely, whether it is spam or ham.

Notice the difference between models 1 and 2.

•	 The housing prices model is a model that can return a number from many possibilities,
such as $100, $250,000, or $3,125,672.33. Thus, it is a regression model.

•	 The spam detection model, on the other hand, can return only two things: spam or ham.
Thus, it is a classification model.

In the following subsections, we elaborate more on regression and classification.

Regression models predict numbers
As we discussed previously, regression models are those in which the label we want to predict is
a number. This number is predicted based on the features. In the housing example, the features
can be anything that describes a house, such as the size, the number of rooms, the distance to the
closest school, or the crime rate in the neighborhood.

Other places where one can use regression models follow:

•	 Stock market: predicting the price of a certain stock based on other stock prices and
other market signals

•	 Medicine: predicting the expected life span of a patient or the expected recovery time,
based on symptoms and the medical history of the patient

	 Supervised learning: The branch of machine learning that works with labeled data � 21

•	 Sales: predicting the expected amount of money a customer will spend, based on the
client’s demographics and past purchase behavior

•	 Video recommendations: predicting the expected amount of time a user will watch a
video, based on the user’s demographics and other videos they have watched

The most common method used for regression is linear regression, which uses linear functions
(lines or similar objects) to make our predictions based on the features. We study linear regres-
sion in chapter 3. Other popular methods used for regression are decision tree regression, which
we learn in chapter 9, and several ensemble methods such as random forests, AdaBoost, gradient
boosted trees, and XGBoost, which we learn in chapter 12.

Classification models predict a state
Classification models are those in which the label we want to predict is a state belonging to a
finite set of states. The most common classification models predict a “yes” or a “no,” but many
other models use a larger set of states. The example we saw in figure 2.3 is an example of classi-
fication, because it predicts the type of the pet, namely, “cat” or “dog.”

In the email spam recognition example, the model predicts the state of the email (namely, spam
or ham) from the features of the email. In this case, the features of the email can be the words on it,
the number of spelling mistakes, the sender, or anything else that describes the email.

Another common application of classification is image recognition. The most popular image
recognition models take as input the pixels in the image, and they output a prediction of what the
image depicts. Two of the most famous datasets for image recognition are MNIST and CIFAR-10.
MNIST contains approximately 60,000 28-by-28-pixel black-and-white images of handwritten
digits which are labelled 0–9. These images come from a combination of sources, including the
American Census Bureau and a repository of handwritten digits written by American high
school students. The MNIST dataset can be found in the following link: http://yann.lecun.com/
exdb/mnist/. The CIFAR-10 dataset contains 60,000 32-by-32-pixel colored images of different
things. These images are labeled with 10 different objects (thus the 10 in its name), namely air-
planes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. This database is maintained
by the Canadian Institute for Advanced Research (CIFAR), and it can be found in the following
link: https://www.cs.toronto.edu/~kriz/cifar.html.

Some additional powerful applications of classification models follow:

•	 Sentiment analysis: predicting whether a movie review is positive or negative,
based on the words in the review

•	 Website traffic: predicting whether a user will click a link or not, based on the user’s
demographics and past interaction with the site

•	 Social media: predicting whether a user will befriend or interact with another user, based
on their demographics, history, and friends in common

•	 Video recommendations: predicting whether a user will watch a video, based on the
user’s demographics and other videos they have watched

The bulk of this book (chapters 5, 6, 8, 9, 10, 11, and 12) covers classification models. In these
chapters we learn the perceptrons (chapter 5), logistic classifiers (chapter 6), the naive Bayes

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

22	 Chapter 2 I Types of machine learning

algorithm (chapter 8), decision trees (chapter 9), neural networks (chapter 10), support vector
machines (chapter 11), and ensemble methods (chapter 12).

Unsupervised learning: The branch of machine
learning that works with unlabeled data
Unsupervised learning is also a common type of machine learning. It differs from supervised
learning in that the data is unlabeled. In other words, the goal of a machine learning model is to
extract as much information as possible from a dataset that has no labels, or targets to predict.

What could such a dataset be, and what could we do with it? In principle, we can do a little less
than what we can do with a labeled dataset, because we have no labels to predict. However, we can
still extract a lot of information from an unlabeled dataset. For example, let’s go back to the cats
and dogs example on the rightmost dataset in figure 2.1. This dataset consists of images of cats and
dogs, but it has no labels. Therefore, we don’t know what type of pet each image represents, so we
can’t predict if a new image corresponds to a dog or a cat. However, we can do other things, such as
determine if two pictures are similar or different. This is something unsupervised learning algo-
rithms do. An unsupervised learning algorithm can group the images based on similarity, even
without knowing what each group represents (figure 2.4). If done properly, the algorithm could
separate the dog images from the cat images, or even group each of them by breed!

I have no idea what you gave me,
but I can tell you these t o on the left arew

different from the two on the right.

Unsupervised learning algorithm

Figure 2.4  An unsupervised learning algorithm can still extract information from data. For example, it can
group similar elements together.

As a matter of fact, even if the labels are there, we can still use unsupervised learning techniques
on our data to preprocess it and apply supervised learning methods more effectively.

The main branches of unsupervised learning are clustering, dimensionality reduction, and
generative learning.

clustering algorithms  The algorithms that group data into clusters based on similarity

	 Unsupervised learning: The branch of machine learning that works with unlabeled data� 23

dimensionality reduction algorithms  The algorithms that simplify our data and faith-
fully describe it with fewer features

generative algorithms  The algorithms that can generate new data points that resemble
the existing data

In the following three subsections, we study these three branches in more detail.

Clustering algorithms split a dataset into similar groups
As we stated previously, clustering algorithms are those that split the dataset into similar groups. To
illustrate this, let’s go back to the two datasets in the section “Supervised learning”—the housing
dataset and the spam email dataset—but imagine that they have no labels. This means that the hous-
ing dataset has no prices, and the email dataset has no information on the emails being spam or ham.

Let’s begin with the housing dataset. What can we do with this dataset? Here is an idea: we
could somehow group the houses by similarity. For example, we could group them by location,
price, size, or a combination of these factors. This process is called clustering. Clustering is a
branch of unsupervised machine learning that consists of the tasks that group the elements in
our dataset into clusters where all the data points are similar.

Now let’s look at the second example, the dataset of emails. Because the dataset is unlabeled,
we don’t know whether each email is spam or ham. However, we can still apply some clustering
to our dataset. A clustering algorithm splits our images into a few different groups based on dif-
ferent features of the email. These features could be the words in the message, the sender, the
number and size of the attachments, or the types of links inside the email. After clustering the
dataset, a human (or a combination of a human and a supervised learning algorithm) could label
these clusters by categories such as “Personal,” “Social,” and “Promotions.”

As an example, let’s look at the dataset in table 2.1, which contains nine emails that we would
like to cluster. The features of the dataset are the size of the email and the number of recipients.

Table 2.1  A table of emails with their size and number of recipients

Email Size Recipients

1 8 1

2 12 1

3 43 1

4 10 2

5 40 2

6 25 5

7 23 6

8 28 6

9 26 7

24	 Chapter 2 I Types of machine learning

To the naked eye, it looks like we could group the emails by their number of recipients. This
would result in two clusters: one with emails having two or fewer recipients, and one with emails
having five or more recipients. We could also try to group them into three groups by size. But you
can imagine that as the table gets larger and larger, eyeballing the groups gets harder and harder.
What if we plot the data? Let’s plot the emails in a graph, where the horizontal axis records the
size and the vertical axis records the number of recipients. This gives us the plot in figure 2.5.

Size

1

Number of
recipients

10 KB 20 KB 30 KB 40 KB

2

3

4

5

6

7

Figure 2.5  A plot of the email dataset. The horizontal axis corresponds to the size of the email and the vertical
axis to the number of recipients. We can see three well-defined clusters in this dataset.

In figure 2.5 we can see three well-defined clusters, which are highlighted in figure 2.6.

Category 1

Size

1

Number of
recipients

10 KB 20 KB 30 KB 40 KB

2

3

4

5

6

7

Category 2 Category 3

Figure 2.6  We can cluster the emails into three categories based on size and number of recipients.

	 Unsupervised learning: The branch of machine learning that works with unlabeled data� 25

This last step is what clustering is all about. Of course, for us humans, it’s easy to eyeball the three
groups once we have the plot. But for a computer, this task is not easy. Furthermore, imagine if
our data contained millions of points, with hundreds or thousands of features. With more than
three features, it is impossible for humans to see the clusters, because they would be in dimen-
sions that we cannot visualize. Luckily, computers can do this type of clustering for huge datasets
with multiple rows and columns.

Other applications of clustering are the following:

•	 Market segmentation: dividing customers into groups based on demographics and
previous purchasing behavior to create different marketing strategies for the groups

•	 Genetics: clustering species into groups based on gene similarity

•	 Medical imaging: splitting an image into different parts to study different types of tissue

•	 Video recommendations: dividing users into groups based on demographics and
previous videos watched and using this to recommend to a user the videos that other
users in their group have watched

More on unsupervised learning models

In the rest of this book, we don’t cover unsupervised learning. However, I strongly encourage you
to study it on your own. Here are some of the most important clustering algorithms out there.
Appendix C lists several more (including some videos of mine) where you can learn these algo-
rithms in detail.

•	 K-means clustering: this algorithm groups points by picking some random centers of
mass and moving them closer and closer to the points until they are at the right spots.

•	 Hierarchical clustering: this algorithm starts by grouping the closest points together and
continuing in this fashion, until we have some well-defined groups.

•	 Density-based spatial clustering (DBSCAN): this algorithm starts grouping points
together in places with high density, while labeling the isolated points as noise.

•	 Gaussian mixture models: this algorithm does not assign a point to one cluster but
instead assigns fractions of the point to each of the existing clusters. For example, if there
are three clusters, A, B, and C, then the algorithm could determine that 60% of a
particular point belongs to group A, 25% to group B, and 15% to group C.

Dimensionality reduction simplifies data without losing too much information
Dimensionality reduction is a useful preprocessing step that we can apply to vastly simplify our
data before applying other techniques. As an example, let’s go back to the housing dataset.
Imagine that the features are the following:

•	 Size

•	 Number of bedrooms

•	 Number of bathrooms

26	 Chapter 2 I Types of machine learning

•	 Crime rate in the neighborhood

•	 Distance to the closest school

This dataset has five columns of data. What if we wanted to turn the dataset into a simpler one
with fewer columns, without losing a lot of information? Let’s do this by using common sense.
Take a closer look at the five features. Can you see any way to simplify them—perhaps to group
them into some smaller and more general categories?

After a careful look, we can see that the first three features are similar, because they are all
related to the size of the house. Similarly, the fourth and fifth features are similar to each other,
because they are related to the quality of the neighborhood. We could condense the first three
features into a big “size” feature, and the fourth and fifth into a big “neighborhood quality” fea-
ture. How do we condense the size features? We could forget about rooms and bedrooms and
consider only the size, we could add the number of bedrooms and bathrooms, or maybe take
some other combination of the three features. We could also condense the area quality features
in similar ways. Dimensionality reduction algorithms will find good ways to condense these
features, losing as little information as possible and keeping our data as intact as possible while
managing to simplify it for easier process and storage (figure 2.7).

Size
Number of bedrooms
Number of bathrooms

Crime rate in the neighborhood
Distance to closest school

General size
Neighborhood quality

Dimensionality reduction

Figure 2.7  Dimensionality reduction algorithms help us simplify our data. On the left, we have a housing
dataset with many features. We can use dimensionality reduction to reduce the number of features in the
dataset without losing much information and obtain the dataset on the right.

Why is it called dimensionality reduction if all we’re doing is reducing the number of columns in
our data? The fancy word for the number of columns in a dataset is dimension. Think about this:
if our data has one column, then each data point is one number. A collection of numbers can be
plotted as a collection of points in a line, which has precisely one dimension. If our data has two
columns, then each data point is formed by a pair of numbers. We can imagine a collection of
pairs of numbers as a collection of points in a city, where the first number is the street number
and the second number is the avenue. Addresses on a map are two-dimensional, because they are
in a plane. What happens when our data has three columns? In this case, then each data point is

	 Unsupervised learning: The branch of machine learning that works with unlabeled data� 27

formed by three numbers. We can imagine that if every address in our city is a building, then the
first and second numbers are the street and avenue, and the third one is the floor in the building.
This looks more like a three-dimensional city. We can keep going. What about four numbers?
Well, now we can’t really visualize it, but if we could, this set of points would look like places in
a four-dimensional city, and so on. The best way to imagine a four-dimensional city is by imag-
ining a table with four columns. What about a 100-dimensional city? This would be a table with
100 columns, in which each person has an address that consists of 100 numbers. The mental
picture we could have when thinking of higher dimensions is shown in figure 2.8. Therefore, as
we went from five dimensions down to two, we reduced our five-dimensional city into a two-di-
mensional city. This is why it is called dimensionality reduction.

Two dimensions
Address in a cit vy (street, a enue)

One dimension
Number on a street

Three dimensions
Address in a building (street, avenue, floor)

More dimensions…
Address in a high-dimensional

parallel universe

(5)
(5, 3)

(5, 3, 4) (5, 3, 4, 7, –1, 9)

Figure 2.8  How to imagine higher dimensional spaces: One dimension is like a street, in which each house
only has one number. Two dimensions is like a flat city, in which each address has two numbers, a street and
an avenue. Three dimensions is like a city with buildings, in which each address has three numbers: a street, an
avenue, and a floor. Four dimensions is like an imaginary place in which each address has four numbers. We can
imagine higher dimensions as another imaginary city in which addresses have as many coordinates as we need.

Other ways of simplifying our data: Matrix factorization
and singular value decomposition
It seems that clustering and dimensionality reduction are nothing like each other, but, in reality,
they are not so different. If we have a table full of data, each row corresponds to a data point, and
each column corresponds to a feature. Therefore, we can use clustering to reduce the number of
rows in our dataset and dimensionality reduction to reduce the number of columns, as figures
2.9 and 2.10 illustrate.

28	 Chapter 2 I Types of machine learning

Data

Features

Clustered
data

Features

Clustering

}
}
}

Figure 2.9  Clustering can be used to simplify our data by reducing the number of rows in our dataset by
grouping several rows into one.

Dimensionality

reduction

Data

Features

Data

Condensed
features

}} }

Figure 2.10  Dimensionality reduction can be used to simplify our data by reducing the number of columns in
our dataset.

	 What is reinforcement learning?� 29

You may be wondering, is there a way that we can reduce both the rows and the columns at the
same time? And the answer is yes! Two common ways we can do this are matrix factorization and
singular value decomposition. These two algorithms express a big matrix of data into a product of
smaller matrices.

Places like Netflix use matrix factorization extensively to generate recommendations. Imagine
a large table where each row corresponds to a user, each column to a movie, and each entry in the
matrix is the rating that the user gave the movie. With matrix factorization, one can extract cer-
tain features, such as type of movie, actors appearing in the movie, and others, and be able to
predict the rating that a user gives a movie, based on these features.

Singular value decomposition is used in image compression. For example, a black-and-white
image can be seen as a large table of data, where each entry contains the intensity of the corre-
sponding pixel. Singular value decomposition uses linear algebra techniques to simplify this
table of data, thus allowing us to simplify the image and store its simpler version using fewer
entries.

Generative machine learning
Generative machine learning is one of the most astonishing fields of machine learning. If you have
seen ultra-realistic faces, images, or videos created by computers, then you have seen generative
machine learning in action.

The field of generative learning consists of models that, given a dataset, can output new data
points that look like samples from that original dataset. These algorithms are forced to learn how
the data looks to produce similar data points. For example, if the dataset contains images of faces,
then the algorithm will produce realistic-looking faces. Generative algorithms have been able to
create tremendously realistic images, paintings, and so on. They have also generated video, music,
stories, poetry, and many other wonderful things. The most popular generative algorithm is gener-
ative adversarial networks (GANs), developed by Ian Goodfellow and his coauthors. Other useful
and popular generative algorithms are variational autoencoders, developed by Kingma and Welling,
and restricted Boltzmann machines (RBMs), developed by Geoffrey Hinton.

As you can imagine, generative learning is quite hard. For a human, it is much easier to deter-
mine if an image shows a dog than it is to draw a dog. This task is just as hard for computers.
Thus, the algorithms in generative learning are complicated, and lots of data and computing
power are needed to make them work well. Because this book is on supervised learning, we won’t
cover generative learning in detail, but in chapter 10, we get an idea of how some of these gener-
ative algorithms work, because they tend to use neural networks. Appendix C contains recommen-
dations of resources, including a video by the author, if you’d like to explore this topic further.

What is reinforcement learning?
Reinforcement learning is a different type of machine learning in which no data is given, and we
must get the computer to perform a task. Instead of data, the model receives an environment and
an agent who is supposed to navigate in this environment. The agent has a goal or a set of goals.

30	 Chapter 2 I Types of machine learning

The environment has rewards and punishments that guide the agent to make the right decisions
to reach its goal. This all sounds a bit abstract, but let’s look at an example.

Example: Grid world

In figure 2.11, we see a grid world with a robot at the bottom-left corner. That is our agent. The
goal is to get to the treasure chest in the top right of the grid. In the grid, we can also see a moun-
tain, which means we cannot go through that square, because the robot cannot climb moun-
tains. We also see a dragon, which will attack the robot, should the robot dare to land in its
square, which means that part of our goal is to not land over there. This is the game. And to give
the robot information about how to proceed, we keep track of a score. The score starts at zero. If
the robot gets to the treasure chest, then we gain 100 points. If the robot reaches the dragon, we
lose 50 points. And to make sure our robot moves quickly, we can say that for every step the robot
makes, we lose 1 point, because the robot loses energy as it walks.

Figure 2.11  A grid world in which our agent is a robot. The goal of the robot is to find the treasure chest, while
avoiding the dragon. The mountain represents a place through which the robot can’t pass.

The way to train this algorithm, in very rough terms, follows: The robot starts walking around,
recording its score and remembering what steps took it there. After some point, it may meet
the dragon, losing many points. Therefore, it learns to associate the dragon square and the
squares close to it with low scores. At some point it may also hit the treasure chest, and it learns
to start associating that square and the squares close to it to high scores. After playing this
game for a long time, the robot will have a good idea of how good each square is, and it can
take the path following the squares all the way to the treasure chest. Figure 2.12 shows a pos-
sible path, although this one is not ideal, because it passes too close to the dragon. Can you
think of a better one?

Summary� 31

Figure 2.12  Here is a path that the robot could take to find the treasure chest.

Of course, this is a very brief explanation, and there is a lot more to reinforcement learning.
Appendix C recommends some resources for further study, including a deep reinforcement
learning video.

Reinforcement learning has numerous cutting-edge applications, including the following:

• Games: recent advances in teaching computers how to win at games, such as Go or
chess, use reinforcement learning. Also, agents have been taught to win at Atari games
such as Breakout or Super Mario.

• Robotics: reinforcement learning is used extensively to help robots carry out tasks such
as picking up boxes, cleaning a room, or even dancing!

• Self-driving cars: reinforcement learning techniques are used to help the car carry out
many tasks such as path planning or behaving in particular environments.

Summary
• Several types of machine learning exist, including supervised learning, unsupervised

learning, and reinforcement learning.

• Data can be labeled or unlabeled. Labeled data contains a special feature, or label, that we
aim to predict. Unlabeled data doesn’t contain this feature.

• Supervised learning is used on labeled data and consists of building models that predict
the labels for unseen data.

32	 Chapter 2 I Types of machine learning

•	 Unsupervised learning is used on unlabeled data and consists of algorithms that simplify
our data without losing a lot of information. Unsupervised learning is often used as a
preprocessing step.

•	 Two common types of supervised learning algorithms are called regression and
classification.

	– Regression models are those in which the answer is any number.

	– Classification models are those in which the answer is of a type or a class.

•	 Two common types of unsupervised learning algorithms are clustering and
dimensionality reduction.

	– Clustering is used to group data into similar clusters to extract information or make it
easier to handle.

	– Dimensionality reduction is a way to simplify our data, by joining certain similar
features and losing as little information as possible.

	– Matrix factorization and singular value decomposition are other algorithms that can
simplify our data by reducing both the number of rows and columns.

•	 Generative machine learning is an innovative type of unsupervised learning, consisting
of generating data that is similar to our dataset. Generative models can paint realistic
faces, compose music, and write poetry.

•	 Reinforcement learning is a type of machine learning in which an agent must navigate an
environment and reach a goal. It is extensively used in many cutting-edge applications.

Exercises
Exercise 2.1

For each of the following scenarios, state if it is an example of supervised or unsupervised learn-
ing. Explain your answers. In cases of ambiguity, pick one, and explain why you picked it.

a.	 A recommendation system on a social network that recommends potential friends to a
user

b.	 A system in a news site that divides the news into topics

c.	 The Google autocomplete feature for sentences

d.	 A recommendation system on an online retailer that recommends to users what to buy
based on their past purchasing history

e.	 A system in a credit card company that captures fraudulent transactions

	 Exercises� 33

Exercise 2.2

For each of the following applications of machine learning, would you use regression or classifi-
cation to solve it? Explain your answers. In cases of ambiguity, pick one, and explain why you
picked it.

a.	 An online store predicting how much money a user will spend on their site

b.	 A voice assistant decoding voice and turning it into text

c.	 Selling or buying stock from a particular company

d.	 YouTube recommending a video to a user

Exercise 2.3

Your task is to build a self-driving car. Give at least three examples of machine learning problems
that you would have to solve to build it. In each example, explain if you are using supervised/
unsupervised learning, and, if supervised, whether you are using regression or classification. If
you are using other types of machine learning, explain which ones, and why.

35

In this chapter

•	 what is linear regression

•	 fitting a line through a set of data points

•	 coding the linear regression algorithm in Python

•	 using Turi Create to build a linear regression model to predict

housing prices in a real dataset

•	 what is polynomial regression

•	 fitting a more complex curve to nonlinear data

•	 discussing examples of linear regression in the real world, such as

medical applications and recommender systems

Drawing a line close to our points:
Linear regression 3

36	 Chapter 3 I Drawing a line close to our points: Linear regression

the next day i drank two

cups of coffee and i managed

to write two pages.

i drank one cup of

coffee and i managed

to write one page.

what do you think

would happen if I

drink three cups?

i don’t know. I’m

no data scientist.

In this chapter, we will learn about linear regression. Linear regression is a powerful and widely
used method to estimate values, such as the price of a house, the value of a certain stock, the life
expectancy of an individual, or the amount of time a user will watch a video or spend on a web-
site. You may have seen linear regression before as a plethora of complicated formulas including
derivatives, systems of equations, and determinants. However, we can also see linear regression
in a more graphical and less formulaic way. In this chapter, to understand linear regression, all
you need is the ability to visualize points and lines moving around.

Let’s say that we have some points that roughly look like they are forming a line, as shown in
figure 3.1.

Figure 3.1  Some points that roughly look like they are forming a line

The goal of linear regression is to draw the line that passes as close to these points as possible.
What line would you draw that passes close to those points? How about the one shown in fig-
ure 3.2?

Think of the points as houses in a town, and our goal is to build a road that goes through the
town. We want the line to pass as close as possible to the points because the town’s inhabitants all
want to live close to the road, and our goal is to please them as much as we can.

	 The problem: We need to predict the price of a house� 37

Figure 3.2  A line that passes close to the points

We can also imagine the points as magnets lying bolted to the floor (so they can’t move). Now
imagine throwing a straight metal rod on top of them. The rod will move around, but because
the magnets pull it, it will eventually end up in a position of equilibrium, as close as it can to all
the points.

Of course, this can lead to a lot of ambiguity. Do we want a road that goes somewhat close to
all the houses, or maybe really close to a few of them and a bit farther from others? Some ques-
tions that arise follow:

•	 What do we mean by “points that roughly look like they are forming a line”?

•	 What do we mean by “a line that passes really close to the points”?

•	 How do we find such a line?

•	 Why is this useful in the real world?

•	 Why is this machine learning?

In this chapter we answer all these questions, and we build a linear regression model to predict
housing prices in a real dataset.

You can find all the code for this chapter in the following GitHub repository: https://github
.com/luisguiserrano/manning/tree/master/Chapter_3_Linear_Regression.

The problem: We need to predict the price of a house
Let’s say that we are real estate agents in charge of selling a new house. We don’t know the price,
and we want to infer it by comparing it with other houses. We look at features of the house that
could influence the price, such as size, number of rooms, location, crime rate, school quality, and
distance to commerce. At the end of the day, we want a formula for all these features that gives
us the price of the house, or at least a good estimate for it.

https://github.com/luisguiserrano/manning/tree/master/Chapter_3_Linear_Regression
https://github.com/luisguiserrano/manning/tree/master/Chapter_3_Linear_Regression

38	 Chapter 3 I Drawing a line close to our points: Linear regression

The solution: Building a regression model
for housing prices
Let’s go with as simple an example as possible. We look at only one of the features—the number
of rooms. Our house has four rooms, and there are six houses nearby, with one, two, three, five,
six, and seven rooms, respectively. Their prices are shown in table 3.1.

Table 3.1  A table of houses with the number of rooms and prices. House 4 is the one whose
price we are trying to infer.

Number of rooms Price

1 150

2 200

3 250

4 ?

5 350

6 400

7 450

What price would you give to house 4, just based on the information on this table? If you said
$300, then we made the same guess. You probably saw a pattern and used it to infer the price of
the house. What you did in your head was linear regression. Let’s study this pattern more. You
may have noticed that each time you add a room, $50 is added to the price of the house. More
specifically, we can think of the price of a house as a combination of two things: a base price of
$100, and an extra charge of $50 for each of the rooms. This can be summarized in a simple
formula:

Price = 100 + 50(Number of rooms)

What we did here is come up with a model represented by a formula that gives us a prediction of
the price of the house, based on the feature, which is the number of rooms. The price per room
is called the weight of that corresponding feature, and the base price is called the bias of the
model. These are all important concepts in machine learning. We learned some of them in chap-
ter 1 and 2, but let’s refresh our memory by defining them from the perspective of this
problem.

features  The features of a data point are those properties that we use to make our predic-
tion. In this case, the features are the number of rooms in the house, the crime rate, the age
of the house, the size, and so on. For our case, we’ve decided on one feature: the number of
rooms in the house.

	 The solution: Building a regression model for housing prices � 39

labels  This is the target that we try to predict from the features. In this case, the label is
the price of the house.

model  A machine learning model is a rule, or a formula, which predicts a label from the
features. In this case, the model is the equation we found for the price.

prediction  The prediction is the output of the model. If the model says, “I think the house
with four rooms is going to cost $300,” then the prediction is 300.

weights  In the formula corresponding to the model, each feature is multiplied by a cor-
responding factor. These factors are the weights. In the previous formula, the only feature
is the number of rooms, and its corresponding weight is 50.

bias  As you can see, the formula corresponding to the model has a constant that is not
attached to any of the features. This constant is called the bias. In this model, the bias is 100,
and it corresponds to the base price of a house.

Now the question is, how did we come up with this formula? Or more specifically, how do we get
the computer to come up with this weight and bias? To illustrate this, let’s look at a slightly more
complicated example. And because this is a machine learning problem, we will approach it using
the remember-formulate-predict framework that we learned in chapter 2. More specifically, we’ll
remember the prices of other houses, formulate a model for the price, and use this model to pre-
dict the price of a new house.

The remember step: Looking at the prices of existing houses
To see the process more clearly, let’s look at a slightly more complicated dataset, such as the one
in table 3.2.

Table 3.2  A slightly more complicated dataset of houses with their number of rooms and
their price

Number of rooms Price

1 155

2 197

3 244

4 ?

5 356

6 407

7 448

This dataset is similar to the previous one, except now the prices don’t follow a nice pattern,
where each price is $50 more than the previous one. However, it’s not that far from the original
dataset, so we can expect that a similar pattern should approximate these values well.

40	 Chapter 3 I Drawing a line close to our points: Linear regression

Normally, the first thing we do when we get a new dataset is to plot it. In figure 3.3, we can see
a plot of the points in a coordinate system in which the horizontal axis represents the number of
rooms, and the vertical axis represents the price of the house.

100

200

300

400

500

Number of rooms

Pr
ic

e

Figure 3.3  Plot of the dataset in table 3.2. The horizontal axis represents the number of rooms, and the vertical
axis represents the price of the house.

The formulate step: Formulating a rule that estimates the price of the house
The dataset in table 3.2 is close enough to the one in table 3.1, so for now, we can feel safe using
the same formula for the price. The only difference is that now the prices are not exactly what the
formula says, and we have a small error. We can write the equation as follows:

Price = 100 + 50(Number of rooms) + (Small error)

If we want to predict prices, we can use this equation. Even though we are not sure we’ll get the
actual value, we know that we are likely to get close. Now the question is, how did we find this
equation? And most important, how does a computer find this equation?

Let’s go back to the plot and see what the equation means there. What happens if we look at all
the points in which the vertical (y) coordinate is 100 plus 50 times the horizontal (x) coordinate?
This set of points forms a line with slope 50 and y-intercept 100. Before we unpack the previous
statement, here are the definitions of slope, y-intercept, and the equation of a line. We delve into
these in more detail in the “Crash course on slope and y-intercept” section.

slope  The slope of a line is a measure of how steep it is. It is calculated by dividing the rise
over the run (i.e., how many units it goes up, divided by how many units it goes to the
right). This ratio is constant over the whole line. In a machine learning model, this is the
weight of the corresponding feature, and it tells us how much we expect the value of the

	 The solution: Building a regression model for housing prices � 41

label to go up, when we increase the value of the feature by one unit. If the line is horizontal,
then the slope is zero, and if the line goes down, the slope is negative.

y-intercept  The y-intercept of a line is the height at which the line crosses the vertical (y-)
axis. In a machine learning model, it is the bias and tells us what the label would be in a data
point where all the features are precisely zero.

linear equation  This is the equation of a line. It is given by two parameters: the slope and
the y-intercept. If the slope is m and the y-intercept is b, then the equation of the line is y =
mx + b, and the line is formed by all the points (x,y) that satisfy the equation. In a machine
learning model, x is the value of the feature and y is the prediction for the label. The weight
and bias of the model are m and b, respectively.

We can now analyze the equation. When we say that the slope of the line is 50—this means that
each time we add one room to the house, we estimate that the price of the house will go up by
$50. When we say that the y-intercept of the line is 100, this means that the estimate for the price
of a (hypothetical) house with zero rooms would be the base price of $100. This line is drawn in
figure 3.4.

100

200

300

400

500

Number of rooms

Pr
ic

e Pric

· (Number of rooms)

e = 100 + 50

Figure 3.4  The model we formulate is the line that goes as close as possible to all the houses.

Now, of all the possible lines (each with its own equation), why did we pick this one in particular?
Because that one passes close to the points. There may be a better one, but at least we know this
one is good, as opposed to one that goes nowhere near the points. Now we are back to the original
problem, where we have a set of houses, and we want to build a road as close as possible to them.

How do we find this line? We’ll look at this later in the chapter. But for now, let’s say that we
have a crystal ball that, given a bunch of points, finds the line that passes the closest to them.

42	 Chapter 3 I Drawing a line close to our points: Linear regression

The predict step: What do we do when a new house comes on the market?
Now, on to using our model to predict the price of the house with four rooms. For this, we plug
the number four as the feature in our formula to get the following:

Price = 100 + 50 · 4 = 300

Therefore, our model predicts that the house costs $300. This can also be seen graphically by
using the line, as illustrated in figure 3.5.

100

200

$300

400

500

Number of rooms

Pr
ic

e

Figure 3.5  Our task is now to predict the price of the house with four rooms. Using the model (line), we deduce
that the predicted price of this house is $300.

What if we have more variables? Multivariate linear regression
In the previous sections we learned about a model that predicts the price of a house based on one
feature—the number of rooms. We may imagine many other features that could help us predict
the price of a house, such as the size, the quality of the schools in the neighborhood, and the age
of the house. Can our linear regression model accommodate these other variables? Absolutely.
When the only feature is the number of rooms, our model predicts the price as the sum of the
feature times their corresponding weight, plus a bias. If we have more features, all we need to do
is multiply them by their corresponding weights and add them to the predicted price. Therefore,
a model for the price of a house could look like this:

Price = 30(number of rooms) + 1.5(size) + 10(quality of the schools) – 2(age of the house) + 50

In this equation, why are all of the weights positive, except for the one corresponding to the age
of the house? The reason is the other three features (number of rooms, size, and quality of the

	 The solution: Building a regression model for housing prices � 43

schools) are positively correlated to the price of the house. In other words, because houses that
are bigger and well located cost more, the higher this feature is, the higher we expect the price of
the house to be. However, because we would imagine that older houses tend to be less expen-
sive, the age feature is negatively correlated to the price of the house.

What if the weight of a feature is zero? This happens when a feature is irrelevant to the price.
For example, imagine a feature that measured the number of neighbors whose last name starts
with the letter A. This feature is mostly irrelevant to the price of the house, so we would expect
that in a reasonable model, the weight corresponding to this feature is either zero or something
very close to it.

In a similar way, if a feature has a very high weight (whether negative or positive), we interpret
this as the model telling us that that feature is important in determining the price of the house.
In the previous model, it seems that the number of rooms is an important feature, because its
weight is the largest (in absolute value).

In the section called “Dimensionality reduction simplifies data without losing too much
information” in chapter 2, we related the number of columns in a dataset to the dimension in
which the dataset lives. Thus, a dataset with two columns can be represented as a set of points in the
plane, and a dataset with three columns can be represented as a set of points in three-dimensional
space. In such a dataset, a linear regression model corresponds not to a line but to a plane that
passes as close as possible to the points. Imagine having many flies flying around in the room in
a stationary position, and our task is to try to pass a gigantic cardboard sheet as close as we can
to all the flies. This is multivariate linear regression with three variables. The problem becomes
hard to visualize for datasets with more columns, but we can always imagine a linear equation
with many variables.

In this chapter, we mostly deal with training linear regression models with only one feature,
but the procedure is similar with more features. I encourage you to read about it while keeping
this fact in the back of your mind, and imagine how you would generalize each of our next state-
ments to a case with several features.

Some questions that arise and some quick answers
OK, your head may be ringing with lots of questions. Let’s address some (hopefully all) of them!

1.	 What happens if the model makes a mistake?

2.	 How did you come up with the formula that predicts the price? And what would we do if
instead of six houses, we had thousands of them?

3.	 Say we’ve built this prediction model, and then new houses start appearing in the market.
Is there a way to update the model with new information?

This chapter answers all these questions, but here are some quick answers:

1.	 What happens if the model makes a mistake?
	 The model is estimating the price of a house, so we expect it to make a small mistake

pretty much all the time, because it is very hard to hit the exact price. The training process
consists of finding the model that makes the smallest errors at our points.

44	 Chapter 3 I Drawing a line close to our points: Linear regression

2.	 How did you come up with the formula that predicts the price? And what would we do
if instead of six houses, we had thousands of them?

	 Yes, this is the main question we address in this chapter! When we have six houses, the
problem of drawing a line that goes close to them is simple, but if we have thousands of
houses, this task gets hard. What we do in this chapter is devise an algorithm, or a
procedure, for the computer to find a good line.

3.	 Say we’ve built this prediction model, and then new houses start appearing in the
market. Is there a way to update the model with new information?

	 Absolutely! We will build the model in a way that it can be easily updated if new data
appears. This is always something to look for in machine learning. If we’ve built our
model in such a way that we need to recalculate the entire model every time new data
comes in, it won’t be very useful.

How to get the computer to draw this line:
The linear regression algorithm
Now we get to the main question of this chapter: how do we get a computer to draw a line that
passes really close to the points? The way we do this is the same way we do many things in
machine learning: step by step. Start with a random line, and figure out a way to improve this
line a little bit by moving it closer to the points. Repeat this process many times, and voilà, we
have the desired line. This process is called the linear regression algorithm.

The procedure may sound silly, but it works really well. Start with a random line. Pick a
random point in the dataset, and move the line slightly closer to that one point. Repeat this
process many times, always picking a random point in the dataset. The pseudocode for the
linear regression algorithm, viewed in this geometric fashion, follows. The illustration is shown
in figure 3.6.

Pseudocode for the linear regression algorithm (geometric)

Inputs: A dataset of points in the plane

Outputs: A line that passes close to the points

Procedure:

•	 Pick a random line.

•	 Repeat many times:

	– Pick a random data point.

	– Move the line a little closer to that point.

•	 Return the line you’ve obtained.

	 How to get the computer to draw this line: The linear regression algorithm � 45

Please, move
closer!

OK!

Done!

Please, move
closer!

OK!

Done!

Please, move
closer!

OK!
Thanks!Thanks!

Thanks!

Thanks!
Thanks!

Done!

Figure 3.6  An illustration of the linear regression algorithm. We start at the top left with a random line
and end in the bottom left with a line that fits the dataset well. At each stage, two things happen: (1) we pick
a random point, and (2) the point asks the line to move closer to it. After many iterations, the line will be in
a good position. This figure has only three iterations for illustrative purposes, but in real life, many more
iterations are needed.

That was the high-level view. To study the process more in detail, we need to delve into the math-
ematical details. Let’s begin by defining some variables.

•	 p: The price of a house in the dataset

•	 p̂: The predicted price of a house

•	 r: The number of rooms

•	 m: The price per room

•	 b: The base price for a house

Why the hat over the predicted price, p̂? Throughout this book, the hat indicates that this is the
variable that our model is predicting. In that way, we can tell the actual price of a house in the
dataset from its predicted price.

Thus, the equation of a linear regression model that predicts the price as the base price plus
the price per room times the number of rooms is

p̂ = mr + b.

This is a formulaic way of saying

Predicted price = (Price per room)(Number of rooms) + Base price of the house.

46	 Chapter 3 I Drawing a line close to our points: Linear regression

To get an idea of the linear regression algorithm, imagine that we have a model in which the price
per room is $40 and the base price of the house is $50. This model predicts the price of a house
using the following formula:

p̂ = 40 · r + 50

To illustrate the linear regression algorithm, imagine that in our dataset we have a house with
two rooms that costs $150. This model predicts that the price of the house is 50 + 40 · 2 = 130.
That is not a bad prediction, but it is less than the price of the house. How can we improve the
model? It seems like the model’s mistake is thinking that the house is too cheap. Maybe the
model has a low base price, or maybe it has a low price per room, or maybe both. If we increase
both by a small amount, we may get a better estimate. Let’s increase the price per room by $0.50
and the base price by $1. (I picked these numbers randomly.) The new equation follows:

p̂ = 40.5 · r + 51

The new predicted price for the house is 40.5 · r + 51 = 132. Because $132 is closer to $150, our
new model makes a better prediction for this house. Therefore, it is a better model for that data
point. We don’t know if it is a better model for the other data points, but let’s not worry about
that for now. The idea of the linear regression algorithm is to repeat the previous process many
times. The pseudocode of the linear regression algorithm follows:

Pseudocode for the linear regression algorithm

Inputs: A dataset of points

Outputs: A linear regression model that fits that dataset

Procedure:

•	 Pick a model with random weights and a random bias.

•	 Repeat many times:

	– Pick a random data point.

	– Slightly adjust the weights and bias to improve the prediction for that particular data
point.

•	 Return the model you’ve obtained.

You may have a few questions, such as the following:

•	 By how much should I adjust the weights?

•	 How many times should I repeat the algorithm? In other words, how do I know when I’m
done?

•	 How do I know that this algorithm works?

We answer all of these questions in this chapter. In the sections “The square trick” and “The
absolute trick,” we learn some interesting tricks to find good values to adjust the weights. In the

	 How to get the computer to draw this line: The linear regression algorithm � 47

sections “The absolute error” and “The square error,” we see the error function, which will help
us decide when to stop the algorithm. And finally, in the section “Gradient descent,” we cover a
powerful method called gradient descent, which justifies why this algorithm works. But first,
let’s start by moving lines in the plane.

Crash course on slope and y-intercept
In the section “The formulate step,” we talked about the equation of a line. In this section, we
learn how to manipulate this equation to move our line. Recall that the equation of a line has the
following two components:

•	 The slope

•	 The y-intercept

The slope tells us how steep the line is, and the y-intercept tells us where the line is located. The
slope is defined as the rise divided by the run, and the y-intercept tells us where the line crosses
the y-axis (the vertical axis). In figure 3.7, we can see both in an example. This line has the fol-
lowing equation:

y = 0.5x + 2

y

x

y

x

= 0.5
+ 2

2

y

x

y

x

=
+ 2

0.5

1

0.5

Slope = 0.5 y-intercept = 2

Figure 3.7  The line with equation y = 0.5x + 2 has slope 0.5 (left) and y-intercept 2 (right).

What does this equation mean? It means that the slope is 0.5, and the y-intercept is 2.
When we say that the slope is 0.5, it means that when we walk along this line, for every unit

that we move to the right, we are moving 0.5 units up. The slope can be zero if we don’t move up
at all or negative if we move down. A vertical line has an undefined slope, but luckily, these don’t
tend to show up in linear regression. Many lines can have the same slope. If I draw any line par-
allel to the line in figure 3.7, this line will also rise 0.5 units for every unit it moves to the right.
This is where the y-intercept comes in. The y-intercept tells us where the line cuts the y-axis. This
line cuts the x-axis at height 2, and that is the y-intercept.

48	 Chapter 3 I Drawing a line close to our points: Linear regression

In other words, the slope of the line tells us the direction in which the line is pointing, and the
y-intercept tells us the location of the line. Notice that by specifying the slope and the y-intercept,
the line is completely specified. In figure 3.8, we can see different lines with the same y-intercept,
and different lines with the same slope.

y

x

slope = 0

slo
pe = 1slo

pe
=

2

slope = 0.5

slope = –1

y

x

y-intercept = 0

y-intercept = 1

y-intercept = 2

0

1

2

y-intercept = –1

–1

Figure 3.8  Some examples of slope and y-intercept. On the left, we see several lines with the same intercept
and different slopes. Notice that the higher the slope, the steeper the line. On the right, we see several lines with
the same slope and different y-intercepts. Notice that the higher the y-intercept, the higher the line is located.

In our current housing example, the slope represents the price per room, and the y-intercept
represents the base price of a house. Let’s keep this in mind, and, as we manipulate the lines,
think of what this is doing to our housing price model.

From the definitions of slope and y-intercept, we can deduce the following:

Changing the slope:

•	 If we increase the slope of a line, the line will rotate counterclockwise.

•	 If we decrease the slope of a line, the line will rotate clockwise.

These rotations are on the pivot shown in figure 3.9, namely, the point of intersection of the line
and the y-axis.

Changing the y-intercept:

•	 If we increase the y-intercept of a line, the line is translated upward.

•	 If we decrease the y-intercept of a line, the line is translated downward.

	 How to get the computer to draw this line: The linear regression algorithm � 49

Figure 3.9 illustrates these rotations and translations, which will come in handy when we want to
adjust our linear regression models.

y

x

Translate up and down

Incr
-inter

ease

cept

y

Decrease y-intercept

y

x

Rotate clockwise and

counterclockwise

Increase
slo

pe

Decrease slope
Pivot

Figure 3.9  Left: Increasing the slope rotates the line counterclockwise, whereas decreasing the slope rotates
it clockwise. Right: Increasing the y-intercept translates the line upward, whereas decreasing the y-intercept
translates it downward.

As explained earlier, in general, the equation of a line is written as y = mx + b, where x and y
correspond to the horizontal and vertical coordinates, m corresponds to the slope, and b to the
y-intercept. Throughout this chapter, to match the notation, we’ll write the equation as p̂ = mr +
b, where p̂ corresponds to the predicted price, r to the number of rooms, m (the slope) to the price
per room, and b (the y-intercept) to the base price of the house.

A simple trick to move a line closer to a set of points, one point at a time

Recall that the linear regression algorithm consists of repeating a step in which we move a line
closer to a point. We can do this using rotations and translations. In this section, we learn a trick
called the simple trick, which consists of slightly rotating and translating the line in the direction
of the point to move it closer (figure 3.10).

Hi! Please,
move closer.

OK!
Better?

Figure 3.10  Our goal is to rotate and translate the line by a small amount to get closer to the point.

50	 Chapter 3 I Drawing a line close to our points: Linear regression

The trick to move the line correctly toward a point is to identify where the point is with respect
to the line. If the point is above the line, we need to translate the line up, and if it is below, we need
to translate it down. Rotation is a bit harder, but because the pivot is the point of intersection of
the line and the y-axis, we can see that if the point is above the line and to the right of the y-axis,
or below the line and to the left of the y-axis, we need to rotate the line counterclockwise. In the
other two scenarios, we need to rotate the line clockwise. These are summarized in the following
four cases, which are illustrated in figure 3.11:

Case 1: If the point is above the line and to the right of the y-axis, we rotate the line counter-
clockwise and translate it upward.

Case 2: If the point is above the line and to the left of the y-axis, we rotate the line clockwise and
translate it upward.

Case 3: If the point is below the line and to the right of the y-axis, we rotate the line clockwise
and translate it downward.

Case 4: If the point is below the line and to the left of the y-axis, we rotate the line counterclock-
wise and translate it downward.

y

x

Rotate counter-
clockwise,

translate up!

Rotate clockwise,
translate up!

Rotate clockwise,
translate down!

Rotate
counter clockwise,

translate down!

Case 1Case 2

Case 3Case 4

Figure 3.11  The four cases. In each of these we must rotate the line and translate it in a different way to move
the line closer to the corresponding point.

Now that we have these four cases, we can write the pseudocode for the simple trick. But first,
let’s clarify some notation. In this section we’ve been talking about lines with equation y = mx + b,

	 How to get the computer to draw this line: The linear regression algorithm � 51

where m is the slope and b is the y-intercept. In the housing example, we used the following sim-
ilar notation:

•	 The point with coordinates (r, p) corresponds to a house with r rooms and price p.

•	 The slope m corresponds to the price per room.

•	 The y-intercept b corresponds to the base price of the house.

•	 The prediction p̂ = mr + b corresponds to the predicted price of the house.

Pseudocode for the simple trick

Inputs:

•	 A line with slope m, y-intercept b, and equation p̂ = mr + b

•	 A point with coordinates (r, p)

Output:

•	 A line with equation p̂ = m ¢r + b that is closer to the point

Procedure:

Pick two very small random numbers, and call them h1 and h2 (the Greek letter eta).

Case 1: If the point is above the line and to the right of the y-axis, we rotate the line counter-
clockwise and translate it upward:

•	 Add h1 to the slope m. Obtain m ¢ = m + h1.

•	 Add h2 to the y-intercept b. Obtain b ¢ = b + h2.

Case 2: If the point is above the line and to the left of the y-axis, we rotate the line clockwise and
translate it upward:

•	 Subtract h1 from the slope m. Obtain m ¢ = m – h1.

•	 Add h2 to the y-intercept b. Obtain b ¢ = b + h2.

Case 3: If the point is below the line and to the right of the y-axis, we rotate the line clockwise
and translate it downward:

•	 Subtract h1 from the slope m. Obtain m ¢ = m – h1.

•	 Subtract h2 from the y-intercept b. Obtain b ¢ = b – h2.

Case 4: If the point is below the line and to the left of the y-axis, we rotate the line counterclock-
wise and translate it downward:

•	 Add h1 to the slope m. Obtain m ¢ = m + h1.

•	 Subtract h2 from the y-intercept b. Obtain b ¢ = b – h2.

Return: The line with equation p̂ = m ¢r + b ¢.

52	 Chapter 3 I Drawing a line close to our points: Linear regression

Note that for our example, adding or subtracting a small number to the slope means increas-
ing or decreasing the price per room. Similarly, adding or subtracting a small number to the
y-intercept means increasing or decreasing the base price of the house. Furthermore, because the
x-coordinate is the number of rooms, this number is never negative. Thus, only cases 1 and 3
matter in our example, which means we can summarize the simple trick in colloquial language
as follows:

Simple trick

•	 If the model gave us a price for the house that is lower than the actual price, add a small
random amount to the price per room and to the base price of the house.

•	 If the model gave us a price for the house that is higher than the actual price, subtract a
small random amount from the price per room and the base price of the house.

This trick achieves some success in practice, but it’s far from being the best way to move lines.
Some questions may arise, such as the following:

•	 Can we pick better values for h1 and h2?

•	 Can we crunch the four cases into two, or perhaps one?

The answer to both questions is yes, and we’ll see how in the following two sections.

The square trick: A much more clever way of moving our line closer
to one of the points

In this section, I show you an effective way to move a line closer to a point. I call this the square
trick. Recall that the simple trick consisted of four cases that were based on the position of the
point with respect to the line. The square trick will bring these four cases down to one by finding
values with the correct signs (+ or –) to add to the slope and the y-intercept for the line to always
move closer to the point.

We start with the y-intercept. Notice the following two observations:

•	 Observation 1: In the simple trick, when the point is above the line, we add a small
amount to the y-intercept. When it is below the line, we subtract a small amount.

•	 Observation 2: If a point is above the line, the value p – p̂ (the difference between the
price and the predicted price) is positive. If it is below the line, this value is negative. This
observation is illustrated in figure 3.12.

	 How to get the computer to draw this line: The linear regression algorithm � 53

y

x

Price

Predicted price

Price – Predicted price > 0

y

x

Price

Predicted price

Price – Predicted price < 0

Figure 3.12  Left: When the point is above the line, the price is larger than the predicted price, so the
difference is positive. Right: When the point is below the line, the price is smaller than the predicted price, so the
difference is negative.

Putting together observation 1 and observation 2, we conclude that if we add the difference p – p̂
to the y-intercept, the line will always move toward the point, because this value is positive when
the point is above the line and negative when the point is below the line. However, in machine
learning, we always want to take small steps. To help us with this, we introduce an important
concept in machine learning: the learning rate.

learning rate  A very small number that we pick before training our model. This number
helps us make sure our model changes in very small amounts by training. In this book, the
learning rate will be denoted by h, the Greek letter eta.

Because the learning rate is small, so is the value h(p – p̂). This is the value we add to the y-intercept
to move the line in the direction of the point.

The value we need to add to the slope is similar, yet a bit more complicated. Notice the follow-
ing two observations:

•	 Observation 3: In the simple trick, when the point is in scenario 1 or 4 (above the line
and to the right of the vertical axis, or below the line and to the left of the vertical axis),
we rotate the line counterclockwise. Otherwise (scenario 2 or 3), we rotate it clockwise.

•	 Observation 4: If a point (r, p) is to the right of the vertical axis, then r is positive. If the
point is to the left of the vertical axis, then r is negative. This observation is illustrated in
figure 3.13. Notice that in this example, r will never be negative, because it is the number
of rooms. However, in a general example, a feature could be negative.

54	 Chapter 3 I Drawing a line close to our points: Linear regression

y

x

y

x

Number
of rooms

< 0
Number
of rooms

> 0

Figure 3.13  Left: When the point is to the left of the y-axis, the number of rooms is negative. Right: When the
point is to the right of the y-axis, the number of rooms is positive.

Consider the value r(p – p̂). This value is positive when both r and p – p̂ are both positive or both
negative. This is precisely what occurs in scenarios 1 and 4. Similarly, r(p – p̂) is negative in sce-
narios 2 and 3. Therefore, due to observation 4, this is the quantity that we need to add to the
slope. We want this value to be small, so again, we multiply it by the learning rate and conclude
that adding hr(p – p̂) to the slope will always move the line in the direction of the point.

We can now write the pseudocode for the square trick as follows:

Pseudocode for the square trick

Inputs:

•	 A line with slope m, y-intercept b, and equation p̂ = mr + b

•	 A point with coordinates (r, p)

•	 A small positive value h (the learning rate)

Output:

•	 A line with equation p̂ = m ¢r + b ¢ that is closer to the point

Procedure:

•	 Add hr(p – p̂) to the slope m. Obtain m ¢ = m + hr(p – p̂) (this rotates the line).

•	 Add h(p – p̂) to the y-intercept b. Obtain b ¢ = b + h(p – p̂) (this translates the line).

Return: The line with equation p̂ = m ¢r + b ¢

We are now ready to code this algorithm in Python! The code for this section follows:

•	 Notebook: Coding_linear_regression.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_3_Linear_
Regression/Coding_linear_regression.ipynb

https://github.com/luisguiserrano/manning/blob/master/Chapter_3_Linear_Regression/Coding_linear_regression.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_3_Linear_Regression/Coding_linear_regression.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_3_Linear_Regression/Coding_linear_regression.ipynb

	 How to get the computer to draw this line: The linear regression algorithm � 55

And here is code for the square trick:

def square_trick(base_price, price_per_room, num_rooms, price, learning_rate):
 predicted_price = base_price + price_per_room*num_rooms
 base_price += learning_rate*(price-predicted_price)
 price_per_room += learning_rate*num_rooms*(price-predicted_price)
 return price_per_room, base_price

The absolute trick: Another useful trick to move the line closer to the points
The square trick is effective, but another useful trick, which we call the absolute trick, is an inter-
mediate between the simple and the square tricks. In the square trick, we used the two quantities,
p – p̂ (price – predicted price) and r (number of rooms), to help us bring the four cases down to
one. In the absolute trick, we use only r to help us bring the four cases down to two. In other
words, here is the absolute trick:

Pseudocode for the absolute trick

Inputs:

•	 A line with slope m, y-intercept b, and equation p̂ = mr + b

•	 A point with coordinates (r, p)

•	 A small positive value h (the learning rate)

Output:

•	 A line with equation p̂ = m ¢r + b ¢ that is closer to the point

Procedure:

Case 1: If the point is above the line (i.e., if p > p̂):

•	 Add hr to the slope m. Obtain m ¢ = m + hr (this rotates the line counterclockwise if the
point is to the right of the y-axis, and clockwise if it is to the left of the y-axis).

•	 Add h to the y-intercept b. Obtain b ¢ = b + h (this translates the line up).

Case 2: If the point is below the line (i.e., if p < p̂):

•	 Subtract hr from the slope m. Obtain m ¢ = m – hr (this rotates the line clockwise if the
point is to the right of the y-axis, and counterclockwise if it is to the left of the y-axis).

•	 Subtract h from the y-intercept b. Obtain b ¢ = b – h (this translates the line down).

Return: The line with equation p̂ = m ¢r + b ¢

Rotates the lineTranslates the line

Calculates
the prediction

56	 Chapter 3 I Drawing a line close to our points: Linear regression

Here is the code for the absolute trick:

def absolute_trick(base_price, price_per_room, num_rooms, price,
learning_rate):

 predicted_price = base_price + price_per_room*num_rooms
 if price > predicted_price:
 price_per_room += learning_rate*num_rooms
 base_price += learning_rate
 else:
 price_per_room -= learning_rate*num_rooms
 base_price -= learning_rate
 return price_per_room, base_price

I encourage you to verify that the amount added to each of the weights indeed has the correct
sign, as we did with the square trick.

The linear regression algorithm: Repeating the absolute or square trick
many times to move the line closer to the points
Now that we’ve done all the hard work, we are ready to develop the linear regression algorithm!
This algorithm takes as input a bunch of points and returns a line that fits them well. This algo-
rithm consists of starting with random values for our slope and our y-intercept and then repeat-
ing the procedure of updating them many times using the absolute or the square trick. Here is
the pseudocode:

Pseudocode for the linear regression algorithm

Inputs:

•	 A dataset of houses with number of rooms and prices

Outputs:

•	 Model weights: price per room and base price

Procedure:

•	 Start with random values for the slope and y-intercept.

•	 Repeat many times:

	– Pick a random data point.

	– Update the slope and the y-intercept using the absolute or the square trick.

Each iteration of the loop is called an epoch, and we set this number at the beginning of our
algorithm. The simple trick was mostly used for illustration, but as was mentioned before, it

	 How to get the computer to draw this line: The linear regression algorithm � 57

doesn’t work very well. In real life, we use the absolute or square trick, which works a lot better.
In fact, although both are commonly used, the square trick is more popular. Therefore, we’ll use
that one for our algorithm, but feel free to use the absolute trick if you prefer.

Here is the code for the linear regression algorithm. Note that we have used the Python ran-
dom package to generate random numbers for our initial values (slope and y-intercept) and for
selecting our points inside the loop:

import random

Imports the random package to
generate (pseudo) random numbers

def linear_regression(features, labels, learning_rate=0.01, epochs = 1000):
 price_per_room = random.random()
 base_price = random.random() Generates random values for

the slope and the y-intercept

 for epoch in range(epochs):
 i = random.randint(0, len(features)-1)

Picks a random
point on our dataset

 num_rooms = features[i]
 price = labels[i]
 price_per_room, base_price = square_trick(base_price,
 price_per_room,
 num_rooms,
 price,
 learning_rate=learning_rate)
 return price_per_room, base_price

The next step is to run this algorithm to build a model that fits our dataset.

Loading our data and plotting it
Throughout this chapter, we load and make plots of our data and models using Matplotlib and
NumPy, two very useful Python packages. We use NumPy for storing arrays and carrying out
mathematical operations, whereas we use Matplotlib for the plots.

The first thing we do is encode the features and labels of the dataset in table 3.2 as NumPy
arrays as follows:

import numpy as np
features = np.array([1,2,3,5,6,7])
labels = np.array([155, 197, 244, 356, 407, 448])

Next we plot the dataset. In the repository, we have some functions for plotting the code in the
file utils.py, which you are invited to take a look at. The plot of the dataset is shown in figure 3.14.
Notice that the points do appear close to forming a line.

Repeats the
update step
many times

Applies the square trick to move
the line closer to our point

http://utils.py

58	 Chapter 3 I Drawing a line close to our points: Linear regression

Figure 3.14  The plot of the points in table 3.2

Using the linear regression algorithm in our dataset
Now, let’s apply the algorithm to fit a line to these points. The following line of code runs the
algorithm with the features, the labels, the learning rate equal to 0.01, and the number of epochs
equal to 10,000. The result is the plot shown in figure 3.15.

linear_regression(features, labels, learning_rate = 0.01, epochs = 10000)

Price per room: 51.053
Base price: 99.097

Figure 3.15  The plot of the points in table 3.2 and the line that we obtained with the linear regression algorithm

	 How to get the computer to draw this line: The linear regression algorithm � 59

Figure 3.15 shows the line where the (rounded) price per room is $51.05, and the base price is
$99.10. This is not far from the $50 and $100 we eyeballed earlier in the chapter.

To visualize the process, let’s look at the progression a bit more. In figure 3.16, you can see a
few of the intermediate lines. Notice that the line starts far away from the points. As the algo-
rithm progresses, it moves slowly to fit better and better every time. Notice that at first (in the
first 10 epochs), the line moves quickly toward a good solution. After epoch 50, the line is good,
but it still doesn’t fit the points perfectly. If we let it run for the whole 10,000 epochs, we get a
great fit.

Starting point Epochs 1–10 Epochs 1–50 Epochs 51–10,000

Figure 3.16  Drawing some of the lines in our algorithm, as we approach a better solution. The first graphic
shows the starting point. The second graphic shows the first 10 epochs of the linear regression algorithm.
Notice how the line is moving closer to fitting the points. The third graphic shows the first 50 epochs. The
fourth graphic shows epochs 51 to 10,000 (the last epoch).

Using the model to make predictions
Now that we have a shiny linear regression model, we can use it to make predictions! Recall from
the beginning of the chapter that our goal was to predict the price of a house with four rooms. In
the previous section, we ran the algorithm and obtained a slope (price per room) of 51.05 and a
y-intercept (base price of the house) of 99.10. Thus, the equation follows:

p̂ = 51.05r + 99.10

The prediction the model makes for a house with r = 4 rooms is

p̂ = 51.05 · 4 + 99.10 = 303.30.

Note that $303.30 is not far from the $300 we eyeballed at the beginning of the chapter!

The general linear regression algorithm (optional)
This section is optional, because it focuses mostly on the mathematical details of the more
abstract algorithm used for a general dataset. However, I encourage you to read it to get used to
the notation that is used in most of the machine learning literature.

In the previous sections, we outlined the linear regression algorithm for our dataset with only one
feature. But as you can imagine, in real life, we will be working with datasets with many features. For
this, we need a general algorithm. The good news is that the general algorithm is not very different

60	 Chapter 3 I Drawing a line close to our points: Linear regression

from the specific one that we learned in this chapter. The only difference is that each of the fea-
tures is updated in the same way that the slope was updated. In the housing example, we had one
slope and one y-intercept. In the general case, think of many slopes and still one y-intercept.

The general case will consist of a dataset of m points and n features. Thus, the model has m
weights (think of them as the generalization of the slope) and one bias. The notation follows:

•	 The data points are x(1), x(2), … , x(m). Each point is of the form x(i) = (x
1
(i), x

2
(i), … , x

n
(i)).

•	 The corresponding labels are y
1
, y

2
, … , y

m
.

•	 The weights of the model are w
1
, w

2
, … , w

n
.

•	 The bias of the model is b.

Pseudocode for the general square trick

Inputs:

•	 A model with equation ŷ = w
1
x

1
 + w

2
x

2+
 + … + w

n
x

n
 + b

•	 A point with coordinates (x, y)

•	 A small positive value h (the learning rate)

Output:

•	 A model with equation ŷ = w
1
¢x

1
 + w

2
¢x

2
 + … + w

n
¢x

n
 + b ¢ that is closer to the point

Procedure:

•	 Add h(y – ŷ) to the y-intercept b. Obtain b ¢ = b + h(y – ŷ).

•	 For i = 1, 2, …, n:

	– Add hx(y – ŷ) to the weight w
i
. Obtain w

i
¢ = w

i
+ hr(y – ŷ).

Return: The model with equation ŷ = w
1
¢x

1
 + w

2
¢x

2
 + … + w

n
¢x

n
 + b ¢

The pseudocode of the general linear regression algorithm is the same as the one in the section
“The linear regression algorithm,” because it consists of iterating over the general square trick, so
we’ll omit it.

How do we measure our results? The error function

In the previous sections, we developed a direct approach to finding the best line fit. However,
many times using a direct approach is difficult to solve problems in machine learning. A more
indirect, yet more mechanical, way to do this is using error functions. An error function is a
metric that tells us how our model is doing. For example, take a look at the two models in figure
3.17. The one on the left is a bad model, whereas the one on the right is a good one. The error

	 How do we measure our results? The error function� 61

function measures this by assigning a large value to the bad model on the left and a small value
to the good model on the right. Error functions are also sometimes called loss functions or cost
functions on the literature. In this book, we call them error functions except in some special
cases in which the more commonly used name requires otherwise.

Good modelBad model

Small errorLarge error

Figure 3.17  Two models, a bad one (on the left) and a good one (on the right). The bad one is assigned a large
error, and the good one is assigned a small error.

Now the question is, how do we define a good error function for linear regression models? We
have two common ways to do this called the absolute error and the square error. In short, the
absolute error is the sum of vertical distances from the line to the points in the dataset, and the
square error is the sum of the squares of these distances.

In the next few sections, we learn about these two error functions in more detail. Then we see
how to reduce them using a method called gradient descent. Finally, we plot one of these error
functions in our existing example and see how quickly the gradient descent method helps us
decrease it.

The absolute error: A metric that tells us how good our model is
by adding distances
In this section we look at the absolute error, which is a metric that tells us how good our model
is. The absolute error is the sum of the distances between the data points and the line. Why is it
called the absolute error? To calculate each of the distances, we take the difference between the
label and the predicted label. This difference can be positive or negative depending on whether
the point is above or below the line. To turn this difference into a number that is always positive,
we take its absolute value.

By definition, a good linear regression model is one where the line is close to the points. What
does close mean in this case? This is a subjective question, because a line that is close to some of
the points may be far from others. In that case, would we rather pick a line that is very close to
some of the points and far from some of the others? Or do we try to pick one that is somewhat
close to all the points? The absolute error helps us make this decision. The line we pick is the one
that minimizes the absolute error, that is, the one for which the sum of vertical distances from
each of the points to the line is minimal. In figure 3.18, you can see two lines, and their absolute
error is illustrated as the sum of the vertical segments. The line on the left has a large absolute

62	 Chapter 3 I Drawing a line close to our points: Linear regression

error, whereas the one on the right has a small absolute error. Thus, between these two, we would
pick the one on the right.

Small absolute error

Error = +

Large absolute error

Error = +++ + +

Figure 3.18  The absolute error is the sum of the vertical distances from the points to the line. Note that the
absolute error is large for the bad model on the left and small for the good model on the right.

The square error: A metric that tells us how good our model
is by adding squares of distances
The square error is very similar to the absolute error, except instead of taking the absolute value
of the difference between the label and the predicted label, we take the square. This always turns
the number into a positive number, because squaring a number always makes it positive. The
process is illustrated in figure 3.19, where the square error is illustrated as the sum of the areas of
the squares of the lengths from the points to the line. You can see how the bad model on the left
has a large square error, whereas the good model on the right has a small square error.

Large square error Small square error

Error = +Error = +++ + +

Figure 3.19  The square error is the sum of the squares of the vertical distances from the points to the line. Note
that the square error is large for the bad model on the left and small for the good model on the right.

As was mentioned earlier, the square error is used more commonly in practice than the absolute
error. Why? A square has a much nicer derivative than an absolute value, which comes in handy
during the training process.

	 How do we measure our results? The error function� 63

Mean absolute and (root) mean square errors are more common in real life
Throughout this chapter we use absolute and square errors for illustration purposes. However, in
practice, the mean absolute error and the mean square error are used much more commonly.
These are defined in a similar way, except instead of calculating sums, we calculate averages.
Thus, the mean absolute error is the average of the vertical distances from the points to the line,
and the mean square error is the average of the squares of these same distances. Why are they
more common? Imagine if we’d like to compare the error or a model using two datasets, one with
10 points and one with 1 million points. If the error is a sum of quantities, one for every point,
then the error is probably much higher on the dataset of 1 million points, because we are adding
many more numbers. If we want to compare them properly, we instead use averages in the calcu-
lation of our error to obtain a measure of how far the line is from each point on average.

For illustration purposes, another error commonly used is the root mean square error, or RMSE
for short. As the name implies, this is defined as the root of the mean square error. It is used to match
the units in the problem and also to give us a better idea of how much error the model makes in a
prediction. How so? Imagine the following scenario: if we are trying to predict house prices, then the
units of the price and the predicted price are, for example, dollars ($). The units of the square error
and the mean square error are dollars squared, which is not a common unit. If we take the square
root, then not only do we get the correct unit, but we also get a more accurate idea of roughly by how
many dollars the model is off per house. Say, if the root mean square error is $10,000, then we can
expect the model to make an error of around $10,000 for any prediction we make.

Gradient descent: How to decrease an error function by slowly descending
from a mountain
In this section, I show you how to decrease any of the previous errors using a similar method to
the one we would use to slowly descend from a mountain. This process uses derivatives, but here
is the great news: you don’t need derivatives to understand it. We already used them in the training
process in the sections “The square trick” and “The absolute trick” earlier. Every time we “move a
small amount in this direction,” we are calculating in the background a derivative of the error
function and using it to give us a direction in which to move our line. If you love calculus and you
want to see the entire derivation of this algorithm using derivatives and gradients, see appendix B.

Let’s take a step back and look at linear regression from far away. What is it that we want to do?
We want to find the line that best fits our data. We have a metric called the error function, which
tells us how far a line is from the data. Thus, if we could just reduce this number as much as pos-
sible, we would find the best line fit. This process, common in many areas in mathematics, is
called minimizing functions, that is, finding the smallest possible value that a function can return.
This is where gradient descent comes in: it is a great way to minimize a function.

In this case, the function we are trying to minimize is the error (absolute or square) of our
model. A small caveat is that gradient descent doesn’t always find the exact minimum value of
the function, but it may find something very close to it. The good news is that, in practice, gra-
dient descent is fast and effective at finding points where the function is low.

How does gradient descent work? Gradient descent is the equivalent of descending from a
mountain. Let’s say we find ourselves on top of a tall mountain called Mount Errorest. We wish

64	 Chapter 3 I Drawing a line close to our points: Linear regression

to descend, but it is very foggy, and we can see only about one meter away. What do we do? A
good method is to look around ourselves and figure out in what direction we can take one single
step, in a way that we descend the most. This process is illustrated in figure 3.20.

Mount

Errorest

Figure 3.20  We are on top of Mount Errorest and wish to get to the bottom, but we can’t see very far.
A way to go down is to look at all the directions in which we can take one step and figure out which one helps us
descend the most. Then we are one step closer to the bottom.

When we find this direction, we take one small step, and because that step was taken in the direc-
tion of greatest descent, then most likely, we have descended a small amount. All we have to do is
repeat this process many times until we (hopefully) reach the bottom. This process is illustrated in
figure 3.21.

Mount

Errorest

Figure 3.21  The way to descend from the mountain is to take that one small step in the direction that makes us
descend the most and to continue doing this for a long time.

	 How do we measure our results? The error function� 65

Why did I say hopefully? Well, this process has many caveats. We could reach the bottom, or we
could also reach a valley and then we have nowhere else to move. We won’t deal with that now,
but we have several techniques to reduce the probability of this happening. In appendix B, “Using
gradient descent to train neural networks,” some of these techniques are outlined.

A lot of math here that we are sweeping under the rug is explained in more detail in appendix B. But
what we did in this chapter was exactly gradient descent. How so? Gradient descent works as follows:

1.	 Start somewhere on the mountain.

2.	 Find the best direction to take one small step.

3.	 Take this small step.

4.	 Repeat steps 2 and 3 many times.

This may look familiar, because in the section “The linear regression algorithm,” after defining
the absolute and square tricks, we defined the linear regression algorithm in the following way:

1.	 Start with any line.

2.	 Find the best direction to move our line a little bit, using either the absolute or the square trick.

3.	 Move the line a little bit in this direction.

4.	 Repeat steps 2 and 3 many times.

The mental picture of this is illustrated in figure 3.22. The only difference is that this error func-
tion looks less like a mountain and more like a valley, and our goal is to descend to the lowest
point. Each point in this valley corresponds to some model (line) that tries to fit our data. The

Figure 3.22  Each point on this mountain corresponds to a different model. The points below are good models
with a small error, and the points above are bad models with a large error. The goal is to descend from this
mountain. The way to descend is by starting somewhere and continuously taking a step that makes us descend.
The gradient will help us decide in what direction to take a step that helps us descend the most.

Step

Large error

Small error

Optimal solution

66	 Chapter 3 I Drawing a line close to our points: Linear regression

height of the point is the error given by that model. Thus, the bad models are on top, and the
good models are on the bottom. We are trying to go as low as possible. Each step takes us from
one model to a slightly better model. If we take a step like this many times, we’ll eventually get
to the best model (or at least, a pretty good one!).

Plotting the error function and knowing when to stop running the algorithm
In this section, we see a plot of the error function for the training that we performed earlier in
the section “Using the linear regression algorithm in our dataset.” This plot gives us useful infor-
mation about training this model. In the repository, we have also plotted the root mean square
error function (RMSE) defined in the section “Mean absolute and (root) mean square errors ...”.
The code for calculating the RMSE follows:

def rmse(labels, predictions):
 n = len(labels)
 differences = np.subtract(labels, predictions)
 return np.sqrt(1.0/n * (np.dot(differences, differences)))

dot product  To code the RMSE function, we used the dot product, which is an easy way
to write a sum of products of corresponding terms in two vectors. For example, the dot
product of the vectors (1,2,3) and (4,5,6) is 1 · 4 + 2 · 5 + 3 · 6 = 32. If we calculate the dot
product of a vector and itself, we obtain the sum of squares of the entries.

The plot of our error is shown in figure 3.23. Note that it quickly dropped after about 1,000 iter-
ations, and it didn’t change much after that. This plot gives us useful information: it tells us that
for this model, we can run the training algorithm for only 1,000 or 2,000 iterations instead of
10,000 and still get similar results.

Figure 3.23  The plot of the root mean square error for our running example. Notice how the algorithm
succeeded in reducing this error after a little over 1,000 iterations. This means that we don’t need to keep
running this algorithm for 10,000 iterations, because around 2,000 of them do the job.

	 Real-life application: Using Turi Create to predict housing prices in India� 67

In general, the error function gives us good information to decide when to stop running the
algorithm. Often, this decision is based on the time and the computational power available to us.
However, other useful benchmarks are commonly used in the practice, such as the following:

•	 When the loss function reaches a certain value that we have predetermined

•	 When the loss function doesn’t decrease by a significant amount during several epochs

Do we train using one point at a time or many?
Stochastic and batch gradient descent
In the section “How to get the computer to draw this line,” we trained a linear regression model
by repeating a step many times. This step consisted of picking one point and moving the line
toward that point. In the section “How do we measure our results,” we trained a linear regression
model by calculating the error (absolute or squared) and decreasing it using gradient descent.
However, this error was calculated on the entire dataset, not on one point at a time. Why is this?

The reality is that we can train models by iterating on one point at a time or on the entire
dataset. However, when the datasets are very big, both options may be expensive. We can practice
a useful method called mini-batch learning, which consists of dividing our data into many mini-
batches. In each iteration of the linear regression algorithm, we pick one of the mini-batches and
proceed to adjust the weights of the model to reduce the error in that mini-batch. The decision
of using one point, a mini-batch of points, or the entire dataset on each iteration gives rise to
three general types of gradient descent algorithms. When we use one point at a time, it is called
stochastic gradient descent. When we use a mini-batch, it is called mini-batch gradient descent.
When we use the entire dataset, it is called batch gradient descent. This process is illustrated in
more detail in appendix B, “Using gradient descent to train models.”

Real-life application: Using Turi Create to predict
housing prices in India

In this section, I show you a real-life application. We’ll use linear regression to predict housing
prices in Hyderabad, India. The dataset we use comes from Kaggle, a popular site for machine
learning competitions. The code for this section follows:

•	 Notebook: House_price_predictions.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_3_Linear_
Regression/House_price_predictions.ipynb

•	 Dataset: Hyderabad.csv

This dataset has 6,207 rows (one per house) and 39 columns (features). As you can imagine, we
won’t code the algorithm by hand. Instead, we use Turi Create, a popular and useful package in
which many machine learning algorithms are implemented. The main object to store data in

https://github.com/luisguiserrano/manning/blob/master/Chapter_3_Linear_Regression/House_price_predictions.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_3_Linear_Regression/House_price_predictions.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_3_Linear_Regression/House_price_predictions.ipynb

68	 Chapter 3 I Drawing a line close to our points: Linear regression

Turi Create is the SFrame. We start by downloading the data into an SFrame, using the following
command:

data = tc.SFrame('Hyderabad.csv')

The table is too big, but you can see the first few rows and columns in table 3.3.

Table 3.3  The first five rows and seven columns of the Hyderabad housing prices dataset

Price Area No. of
Bedrooms Resale MaintenanceStaff Gymnasium SwimmingPool

30000000 3340 4 0 1 1 1

7888000 1045 2 0 0 1 1

4866000 1179 2 0 0 1 1

8358000 1675 3 0 0 0 0

6845000 1670 3 0 1 1 1

Training a linear regression model in Turi Create takes only one line of code. We use the function
create from the package linear_regression. In this function, we only need to specify the tar-
get (label), which is Price, as follows:

model = tc.linear_regression.create(data, target='Price')

It may take a few moments to train, but after it trains, it outputs some information. One of the
fields it outputs is the root mean square error. For this model, the RMSE is in the order of
3,000,000. This is a large RMSE, but it doesn’t mean the model makes bad predictions. It may
mean that the dataset has many outliers. As you can imagine, the price of a house may depend
on many other features that are not in the dataset.

We can use the model to predict the price of a house with an area of 1,000, and three bed-
rooms as follows:

house = tc.SFrame({'Area': [1000], 'No. of Bedrooms':[3]})
model.predict(house)
Output: 2594841

The model outputs that the price for a house of size 1,000 and three bedrooms is 2,594,841.
We can also train a model using fewer features. The create function allows us to input the

features we want to use as an array. The following line of code trains a model called simple_
model that uses the area to predict the price:

simple_model = tc.linear_regression.create(data, features=['Area'],
target='Price')

We can explore the weights of this model with the following line of code:

simple_model.coefficients

	 What if the data is not in a line? Polynomial regression � 69

The output gives us the following weights:

•	 Slope: 9664.97

•	 y-intercept: –6,105,981.01

The intercept is the bias, and the coefficient for area is the slope of the line, when we plot area and
price. The plot of the points with the corresponding model is shown in figure 3.24.

Figure 3.24  The Hyderabad housing prices dataset restricted to area and price. The line is the model we’ve
obtained using only the area feature to predict the price.

We could do a lot more in this dataset, and I invite you to continue exploring. For example, try
to explore what features are more important than others by looking at the weights of the
model. I encourage you to take a look at the Turi Create documentation (https://apple.github.io/
turicreate/docs/api/) for other functions and tricks you can do to improve this model.

What if the data is not in a line?
Polynomial regression
In the previous sections, we learned how to find the best line fit for our data, assuming our data
closely resembles a line. But what happens if our data doesn’t resemble a line? In this section, we
learn a powerful extension to linear regression called polynomial regression, which helps us deal
with cases in which the data is more complex.

A special kind of curved functions: Polynomials
To learn polynomial regression, first we need to learn what polynomials are. Polynomials are a
class of functions that are helpful when modeling nonlinear data.

https://apple.github.io/turicreate/docs/api/
https://apple.github.io/turicreate/docs/api/

70	 Chapter 3 I Drawing a line close to our points: Linear regression

We’ve already seen polynomials, because every line is a polynomial of degree 1. Parabolas are
examples of polynomials of degree 2. Formally, a polynomial is a function in one variable that
can be expressed as a sum of multiples of powers of this variable. The powers of a variable x are
1, x, x2, x3, …. Note that the two first are x0 = 1 and x1 = x. Therefore, the following are examples
of polynomials:

•	 y = 4

•	 y = 3x + 2

•	 y = x2 – 2x + 5

•	 y = 2x3 + 8x2 – 40

We define the degree of the polynomial as the exponent of the highest power in the expression
of the polynomial. For example, the polynomial y = 2x3 + 8x2 – 40 has degree 3, because 3 is the
highest exponent that the variable x is raised to. Notice that in the example, the polynomials have
degree 0, 1, 2, and 3. A polynomial of degree 0 is always a constant, and a polynomial of degree 1
is a linear equation like the ones we’ve seen previously in this chapter.

The graph of a polynomial looks a lot like a curve that oscillates several times. The number of
times it oscillates is related to the degree of the polynomial. If a polynomial has degree d, then
the graph of that polynomial is a curve that oscillates at most d – 1 times (for d > 1). In figure 3.25
we can see the plots of some examples of polynomials.

Degree 0
y = 4

Degree 1
y x= 3 + 4

Degree 2
y x= 2 – 2 – 3x

Degree 3
y x= 3 + 2x2 – 4 – 1x

Figure 3.25  Polynomials are functions that help us model our data better. Here are the plots of four
polynomials of degrees 0 to 3. Note that the polynomial of degree 0 is a horizontal line, the polynomial of
degree 1 is any line, the polynomial of degree 2 is a parabola, and the polynomial of degree 3 is a curve that
oscillates twice.

From the plot, notice that polynomials of degree 0 are flat lines. Polynomials of degree 1 are lines
with slopes different from 0. Polynomials of degree 2 are quadratics (parabolas). Polynomials of
degree 3 look like a curve that oscillates twice (although they could potentially oscillate fewer
times). How would the plot of a polynomial of degree 100 look like? For example, the plot of y =
x100 – 8x62 + 73x27 – 4x + 38? We’d have to plot it to find out, but for sure, we know that it is a curve
that oscillates at most 99 times.

	 Parameters and hyperparameters� 71

Nonlinear data? No problem: Let’s try to fit a polynomial curve to it
In this section, we see what happens if our data is not linear (i.e., does not look like it forms a
line), and we want to fit a polynomial curve to it. Let’s say that our data looks like the left side of
figure 3.26. No matter how much we try, we can’t really find a good line that fits this data. No
problem! If we decide to fit a polynomial of degree 3 (also called a cubic), then we get the curve
shown at the right of figure 3.26, which is a much better fit to the data.

Polynomial
regression

Figure 3.26  Polynomial regression is useful when it comes to modeling nonlinear data. If our data looks like
the left part of the figure, it will be hard to find a line that fits it well. However, a curve will fit the data well, as
you can see in the right part of the figure. Polynomial regression helps us find this curve.

The process to train a polynomial regression model is similar to the process of training a linear
regression model. The only difference is that we need to add more columns to our dataset before
we apply linear regression. For example, if we decide to fit a polynomial of degree 3 to the data in
figure 3.26, we need to add two columns: one corresponding to the square of the feature and one
corresponding to the cube of the feature. If you’d like to study this in more detail, please check
out the section “Polynomial regression, testing, and regularization with Turi Create” in chapter 4,
in which we learn an example of polynomial regression in a parabolic dataset.

A small caveat with training a polynomial regression model is that we must decide the degree of the
polynomial before the training process. How do we decide on this degree? Do we want a line (degree
1), a parabola (degree 2), a cubic (degree 3), or some curve of degree 50? This question is important,
and we deal with it in chapter 4, when we learn overfitting, underfitting, and regularization!

Parameters and hyperparameters
Parameters and hyperparameters are some of the most important concepts in machine learning,
and in this section, we learn what they are and how to tell them apart.

As we saw in this chapter, regression models are defined by their weights and bias—the param-
eters of the model. However, we can twist many other knobs before training a model, such as the
learning rate, the number of epochs, the degree (if considering a polynomial regression model),
and many others. These are called hyperparameters.

72	 Chapter 3 I Drawing a line close to our points: Linear regression

Each machine learning model that we learn in this book has some well-defined parameters and
hyperparameters. They tend to be easily confused, so the rule of thumb to tell them apart follows:

•	 Any quantity that you set before the training process is a hyperparameter.

•	 Any quantity that the model creates or modifies during the training process is a
parameter.

Applications of regression
The impact of machine learning is measured not only by the power of its algorithms but also by
the breadth of useful applications it has. In this section, we see some applications of linear regres-
sion in real life. In each of the examples, we outline the problem, learn some features to solve it,
and then let linear regression do its magic.

Recommendation systems
Machine learning is used widely to generate good recommendations in some of the most well-
known apps, including YouTube, Netflix, Facebook, Spotify, and Amazon. Regression plays a key
part in most of these recommender systems. Because regression predicts a quantity, all we have
to do to generate good recommendations is figure out what quantity is the best at indicating user
interaction or user satisfaction. Following are some more specific examples of this.

Video and music recommendations
One of the ways used to generate video and music recommendations is to predict the amount of
time a user will watch a video or listen to a song. For this, we can create a linear regression model
where the labels on the data are the amount of minutes that each song is watched by each user.
The features can be demographics on the user, such as their age, location, and occupation, but
they can also be behavioral, such as other videos or songs they have clicked on or interacted with.

Product recommendations
Stores and ecommerce websites also use linear regression to predict their sales. One way to do
this is to predict how much a customer will spend in the store. We can do this using linear regres-
sion. The label to predict can be the amount the user spent, and the features can be demographic
and behavioral, in a similar way to the video and music recommendations.

Health care
Regression has numerous applications in health care. Depending on what problem we want to
solve, predicting the right label is the key. Here are a couple of examples:

•	 Predicting the life span of a patient, based on their current health conditions

•	 Predicting the length of a hospital stay, based on current symptoms

	 Exercises� 73

Summary
•	 Regression is an important part of machine learning. It consists of training an algorithm

with labeled data and using it to make predictions on future (unlabeled) data.

•	 Labeled data is data that comes with labels, which in the regression case, are numbers.
For example, the numbers could be prices of houses.

•	 In a dataset, the features are the properties that we use to predict the label. For example,
if we want to predict housing prices, the features are anything that describes the house
and which could determine the price, such as size, number of rooms, school quality,
crime rate, age of the house, and distance to the highway.

•	 The linear regression method for predicting consists in assigning a weight to each of the
features and adding the corresponding weights multiplied by the features, plus a bias.

•	 Graphically, we can see the linear regression algorithm as trying to pass a line as close as
possible to a set of points.

•	 The way the linear regression algorithm works is by starting with a random line and then
slowly moving it closer to each of the points that is misclassified, to attempt to classify
them correctly.

•	 Polynomial regression is a generalization of linear regression, in which we use curves
instead of lines to model our data. This is particularly useful when our dataset is nonlinear.

•	 Regression has numerous applications, including recommendation systems, ecommerce,
and health care.

Exercises
Exercise 3.1

A website has trained a linear regression model to predict the amount of minutes that a user will
spend on the site. The formula they have obtained is

t̂ = 0.8d + 0.5m + 0.5y + 0.2a + 1.5

where t̂ is the predicted time in minutes, and d, m, y, and a are indicator variables (namely, they
take only the values 0 or 1) defined as follows:

•	 d is a variable that indicates if the user is on desktop.

•	 m is a variable that indicates if the user is on mobile device.

•	 y is a variable that indicates if the user is young (under 21 years old).

•	 a is a variable that indicates if the user is an adult (21 years old or older).

74	 Chapter 3 I Drawing a line close to our points: Linear regression

Example: If a user is 30 years old and on a desktop, then d = 1, m = 0, y = 0, and a = 1.
If a 45-year-old user looks at the website from their phone, what is the expected time they will

spend on the site?

Exercise 3.2

Imagine that we trained a linear regression model in a medical dataset. The model predicts the
expected life span of a patient. To each of the features in our dataset, the model would assign a
weight.

a) For the following quantities, state if you believe the weight attached to this quantity is a posi-
tive number, a negative number, or zero. Note: if you believe that the weight is a very small num-
ber, whether positive or negative, you can say zero.

1.	 Number of hours of exercise the patient gets per week

2.	 Number of cigarettes the patient smokes per week

3.	 Number of family members with heart problems

4.	 Number of siblings of the patient

5.	 Whether or not the patient has been hospitalized

b) The model also has a bias. Do you think the bias is positive, negative, or zero?

Exercise 3.3

The following is a dataset of houses with sizes (in square feet) and prices (in dollars).

Size (s) Prize (p)

House 1 100 200

House 2 200 475

House 3 200 400

House 4 250 520

House 5 325 735

Suppose we have trained the model where the prediction for the price of the house based on size
is the following:

p̂ = 2s + 50

a.	 Calculate the predictions that this model makes on the dataset.

b.	 Calculate the mean absolute error of this model.

c.	 Calculate the root mean square error of this model.

	 Exercises� 75

Exercise 3.4

Our goal is to move the line with equation ŷ = 2x + 3 closer to the point (x, y) = (5, 15) using the
tricks we’ve learned in this chapter. For the following two problems, use the learning rate h = 0.01.

a.	 Apply the absolute trick to modify the line above to be closer to the point.

b.	 Apply the square trick to modify the line above to be closer to the point.

77

In this chapter

•	 what is underfitting and overfitting

•	 some solutions for avoiding overfitting: testing, the model

complexity graph, and regularization

•	 calculating the complexity of the model using the L1 and L2 norms

•	 picking the best model in terms of performance and complexity

Optimizing the training process:
Underfitting, overfitting, testing,

and regularization
4

oh no!

what are you

going to do?

i went for lunch and when

i came back my model

had overfit! genius.

I’m never

going for

lunch again.

78	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

This chapter is different from most of the chapters in this book, because it doesn’t contain a par-
ticular machine learning algorithm. Instead, it describes some potential problems that machine
learning models may face and effective practical ways to solve them.

Imagine that you have learned some great machine learning algorithms, and you are ready to
apply them. You go to work as a data scientist, and your first task is to build a machine learning
model for a dataset of customers. You build it and put it in production. However, everything goes
wrong, and the model doesn’t do a good job of making predictions. What happened?

It turns out that this story is common, because many things can go wrong with our models.
Fortunately, we have several techniques to improve them. In this chapter, I show you two prob-
lems that happen often when training models: underfitting and overfitting. I then show you
some solutions to avoid underfitting and overfitting our models: testing and validation, the
model complexity graph, and regularization.

Let’s explain underfitting and overfitting with the following analogy. Let’s say that we have to
study for a test. Several things could go wrong during our study process. Maybe we didn’t study
enough. There’s no way to fix that, and we’ll likely perform poorly in our test. What if we studied
a lot but in the wrong way. For example, instead of focusing on learning, we decided to memorize
the entire textbook word for word. Will we do well in our test? It’s likely that we won’t, because
we simply memorized everything without learning. The best option, of course, would be to study
for the exam properly and in a way that enables us to answer new questions that we haven’t seen
before on the topic.

In machine learning, underfitting looks a lot like not having studied enough for an exam. It
happens when we try to train a model that is too simple, and it is unable to learn the data.
Overfitting looks a lot like memorizing the entire textbook instead of studying for the exam. It
happens when we try to train a model that is too complex, and it memorizes the data instead of
learning it well. A good model, one that neither underfits nor overfits, is one that looks like hav-
ing studied well for the exam. This corresponds to a good model that learns the data properly and
can make good predictions on new data that it hasn’t seen.

Another way to think of underfitting and overfitting is when we have a task in hand. We can
make two mistakes. We can oversimplify the problem and come up with a solution that is too sim-
ple. We can also overcomplicate the problem and come up with a solution that is too complex.

Imagine if our task is to kill Godzilla, as shown in figure 4.1, and we come to battle equipped
with nothing but a fly swatter. That is an example of an oversimplification. The approach won’t
go well for us, because we underestimated the problem and came unprepared. This is underfit-
ting: our dataset is complex, and we come to model it equipped with nothing but a simple model.
The model will not be able to capture the complexities of the dataset.

In contrast, if our task is to kill a small fly and we use a bazooka to do the job, this is an example
of an overcomplication. Yes, we may kill the fly, but we’ll also destroy everything at hand and put
ourselves at risk. We overestimated the problem, and our solution wasn’t good. This is overfitting:
our data is simple, but we try to fit it to a model that is too complex. The model will be able to fit
our data, but it’ll memorize it instead of learning it. The first time I learned overfitting, my reaction
was, “Well, that’s no problem. If I use a model that is too complex, I can still model my data, right?”
Correct, but the real problem with overfitting is trying to get the model to make predictions on
unseen data. The predictions will likely come out looking horrible, as we see later in this chapter.

	 An example of underfitting and overfitting using polynomial regression� 79

Underfitting Overfitting

Figure 4.1  Underfitting and overfitting are two problems that can occur when training our machine learning
model. Left: Underfitting happens when we oversimplify the problem at hand, and we try to solve it using a simple
solution, such as trying to kill Godzilla using a fly swatter. Right: Overfitting happens when we overcomplicate the
solution to a problem and try to solve it with an exceedingly complicated solution, such as trying to kill a fly using
a bazooka.

As we saw in the section “Paramaters and hyperparameters” in chapter 3, every machine learn-
ing model has hyperparameters, which are the knobs that we twist and turn before training the
model. Setting the right hyperparameters for our model is of extreme importance. If we set some
of them wrong, we are prone to underfit or overfit. The techniques that we cover in this chapter
are useful to help us tune the hyperparameters correctly.

To make these concepts clearer, we’ll look at an example with a dataset and several different
models that are created by changing one particular hyperparameter: the degree of a polynomial.

You can find all the code for this chapter in the following GitHub repository: https://github
.com/luisguiserrano/manning/tree/master/Chapter_4_Testing_Overfitting_Underfitting.

An example of underfitting and overfitting using
polynomial regression

In this section, we see an example of overfitting and underfitting in the same dataset. Look
carefully at the dataset in figure 4.2, and try to fit a polynomial regression model (seen in
the section “What if the data is not in a line?” in chapter 3). Let’s think of what kind of poly-
nomial would fit this dataset. Would it be a line, a parabola, a cubic, or perhaps a polynomial
of degree 100? Recall that the degree of a polynomial is the highest exponent present. For
example, the polynomial 2x14 + 9x6 – 3x + 2 has degree 14.

https://github.com/luisguiserrano/manning/tree/master/Chapter_4_Testing_Overfitting_Underfitting
https://github.com/luisguiserrano/manning/tree/master/Chapter_4_Testing_Overfitting_Underfitting

80	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

Figure 4.2  In this dataset, we train some models and exhibit training problems such as underfitting and
overfitting. If you were to fit a polynomial regression model to this dataset, what type of polynomial would you
use: a line, a parabola, or something else?

I think that dataset looks a lot like a parabola that opens downward (a sad face). This is a polyno-
mial of degree 2. However, we are humans, and we eyeballed it. A computer can’t do that. A
computer needs to try many values for the degree of the polynomial and somehow pick the best
one. Let’s say the computer will try to fit it with polynomials of degrees 1, 2, and 10. When we fit
polynomials of degree 1 (a line), 2 (a quadratic), and 10 (a curve that oscillates at most nine times)
to this dataset, we obtain the results shown in figure 4.3.

Model 1
Polynomial of degree 1

(a line)

Model 2
Polynomial of degree 2

(a parabola)

Model 3
Polynomial of degree 10

Figure 4.3  Fitting three models to the same dataset. Model 1 is a polynomial of degree 1, which is a line.
Model 2 is a polynomial of degree 2, or a quadratic. Model 3 is a polynomial of degree 10. Which one looks like
the best fit?

	 How do we get the computer to pick the right model? By testing� 81

In figure 4.3 we see three models, model 1, model 2, and model 3. Notice that model 1 is too
simple, because it is a line trying to fit a quadratic dataset. There is no way we’ll find a good line
to fit this dataset, because the dataset simply does not look like a line. Therefore, model 1 is a
clear example of underfitting. Model 2, in contrast, fits the data pretty well. This model neither
overfits nor underfits. Model 3 fits the data extremely well, but it completely misses the point.
The data is meant to look like a parabola with a bit of noise, and the model draws a very compli-
cated polynomial of degree 10 that manages to go through each one of the points but doesn’t
capture the essence of the data. Model 3 is a clear example of overfitting.

To summarize the previous reasoning, here is an observation that we use throughout this
chapter, and in many other episodes in this book: very simple models tend to underfit. Very
complex models tend to overfit. The goal is to find a model that is neither too simple nor too
complex and that captures the essence of our data well.

We’re about to get to the challenging part. As humans, we know that the best fit is given by
model 2. But what does the computer see? The computer can only calculate error functions. As
you may recall from chapter 3, we defined two error functions: absolute error and square error.
For visual clarity, in this example we’ll use absolute error, which is the average of the sums of the
absolute values of the distances from the points to the curve, although the same arguments
would work with the square error. For model 1, the points are far from the model, so this error is
large. For model 2, these distances are small, so the error is small. However, for model 3, the
distances are zero because the points all fall in the actual curve! This means that the computer
will think that the perfect model is model 3. This is not good. We need a way to tell the computer
that the best model is model 2 and that model 3 is overfitting. How can we do this? I encourage
you to put this book down for a few minutes and think of some ideas yourself, because there are
several solutions for this problem.

How do we get the computer to pick the right model?
By testing
One way to determine if a model overfits is by testing it, and that is what we do in this section.
Testing a model consists of picking a small set of the points in the dataset and choosing to use
them not for training the model but for testing the model’s performance. This set of points is
called the testing set. The remaining set of points (the majority), which we use for training the
model, is called the training set. Once we’ve trained the model on the training set, we use the
testing set to evaluate the model. In this way, we make sure that the model is good at generalizing
to unseen data, as opposed to memorizing the training set. Going back to the exam analogy, let’s
imagine training and testing this way. Let’s say that the book we are studying for in the exam has
100 questions at the end. We pick 80 of them to train, which means we study them carefully, look
up the answers, and learn them. Then we use the remaining 20 questions to test ourselves—we
try to answer them without looking at the book, as in an exam setting.

Now let’s see how this method looks with our dataset and our models. Notice that the real
problem with model 3 is not that it doesn’t fit the data; it’s that it doesn’t generalize well to new

82	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

data. In other words, if you trained model 3 on that dataset and some new points appeared,
would you trust the model to make good predictions with these new points? Probably not,
because the model merely memorized the entire dataset without capturing its essence. In this
case, the essence of the dataset is that it looks like a parabola that opens downward.

In figure 4.4, we have drawn two white triangles in our dataset, representing the testing set.
The training set corresponds to the black circles. Now let’s examine this figure in detail and see
how these three models perform with both our training and our testing sets. In other words, let’s
examine the error that the model produces in both datasets. We’ll refer to these two errors as the
training error and the testing error.

The top row in figure 4.4 corresponds to the training set and the bottom row to the testing set.
To illustrate the error, we have drawn vertical lines from the point to the model. The mean abso-
lute error is precisely the average of the lengths of these lines. Looking at the top row we can see
that model 1 has a large training error, model 2 has a small training error, and model 3 has a tiny
training error (zero, in fact). Thus, model 3 does the best job on the training set.

Model 1

(degree 1)

Training

error

High

High

Low Very low

LowHigh

Testing

error

Model 2

(degree 2)
Model 3

(degree 10)

Figure 4.4  We can use this table to decide how complex we want our model. The columns represent the three
models of degree 1, 2, and 10. The columns represent the training and the testing error. The solid circles are the
training set, and the white triangles are the testing set. The errors at each point can be seen as the vertical lines
from the point to the curve. The error of each model is the mean absolute error given by the average of these
vertical lengths. Notice that the training error goes down as the complexity of the model increases. However,
the testing error goes down and then back up as the complexity increases. From this table, we conclude that
out of these three models, the best one is model 2, because it gives us a low testing error.

However, when we get to the testing set, things change. Model 1 still has a large testing error,
meaning that this is simply a bad model, underperforming with the training and the testing set:
it underfits. Model 2 has a small testing error, which means it is a good model, because it fits both

	 How do we get the computer to pick the right model? By testing� 83

the training and the testing set well. Model 3, however, produces a large testing error. Because it
did such a terrible job fitting the testing set, yet such a good job fitting the training set, we con-
clude that model 3 overfits.

Let’s summarize what we have learned so far.

Models can

•	 Underfit: use a model that is too simple to our dataset.

•	 Fit the data well: use a model that has the right amount of complexity for our dataset.

•	 Overfit: use a model that is too complex for our dataset.

In the training set

•	 The underfit model will do poorly (large training error).

•	 The good model will do well (small training error).

•	 The overfit model will do very well (very small training error).

In the testing set

•	 The underfit model will do poorly (large testing error).

•	 The good model will do well (small testing error).

•	 The overfit model will do poorly (large testing error).

Thus, the way to tell whether a model underfits, overfits, or is good, is to look at the training and
testing errors. If both errors are high, then it underfits. If both errors are low, then it is a good
model. If the training error is low and the testing error is high, then it overfits.

How do we pick the testing set, and how big should it be?

Here’s a question. Where did I pull those two new points from? If we are training a model in
production where data is always flowing, then we can pick some of the new points as our testing
data. But what if we don’t have a way to get new points, and all we have is our original dataset of
10 points? When this happens, we just sacrifice some of our data and use it as a test set. How
much data? That depends on how much data we have and how well we want the model to do, but
in practice, any value from 10% to 20% seems to work well.

Can we use our testing data for training the model? No.
In machine learning, we always need to follow an important rule: when we split our data into
training and testing, we should use the training data for training the model, and for absolutely
no reason should we touch the testing data while training the model or making decisions on
the model’s hyperparameters. Failure to do so is likely to result in overfitting, even if it’s not
noticeable by a human. In many machine learning competitions, teams have submitted mod-
els they think are wonderful, only for them to fail miserably when tested on a secret dataset.
This can be because the data scientists training the models somehow (perhaps inadvertently)

84	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

used the testing data to train them. In fact, this rule is so important, we’ll make it the golden
rule of this book.

golden rule  Thou shalt never use your testing data for training.

Right now, it seems like it’s an easy rule to follow, but as we’ll see, it’s a very easy rule to acciden-
tally break.

As a matter of fact, we already broke the golden rule during this chapter. Can you tell where?
I encourage you to go back and find where we broke it. We’ll see where in the next section.

Where did we break the golden rule, and how
do we fix it? The validation set
In this section, we see where we broke the golden rule and learn a technique called validation,
which will come to our rescue.

We broke the golden rule in the section “How do we get the computer to pick the right
model.” Recall that we had three polynomial regression models: one of degree 1, one of degree
2, and one of degree 10, and we didn’t know which one to pick. We used our training data to
train the three models, and then we used the testing data to decide which model to pick. We
are not supposed to use the testing data to train our model or to make any decisions on the
model or its hyperparameters. Once we do this, we are potentially overfitting! We potentially
overfit every time we build a model that caters too much to our dataset.

What can we do? The solution is simple: we break our dataset even more. We introduce a new
set, the validation set, which we then use to make decisions on our dataset. In summary, we break
our dataset into the following three sets:

•	 Training set: for training all our models

•	 Validation set: for making decisions on which model to use

•	 Testing set: for checking how well our model did

Thus, in our example, we would have two more points to use for validation, and looking at the
validation error should help us decide that the best model to use is model 2. We should use the
testing set at the very end, to see how well our model did. If the model is not good, we should
throw everything away and start from scratch.

In terms of the sizes of the testing and validation sets, it is common to use a 60-20-20 split
or an 80-10-10 split—in other words, 60% training, 20% validation, 20% testing, or 80%
training, 10% validation, 10% testing. These numbers are arbitrary, but they tend to work well,
because they leave most of the data for training but still allow us to test the model in a big
enough set.

	 A numerical way to decide how complex our model should be: The model complexity graph� 85

A numerical way to decide how complex our model
should be: The model complexity graph
In the previous sections, we learned how to use the validation set to help us decide which model
was the best among three different ones. In this section, we learn about a graph called the model
complexity graph, which helps us decide among many more models. Imagine that we have a dif-
ferent and much more complex dataset, and we are trying to build a polynomial regression model
to fit it. We want to decide the degree of our model among the numbers between 0 and 10 (inclu-
sive). As we saw in the previous section, the way to decide which model to use is to pick the one
that has the smallest validation error.

However, plotting the training and testing errors can give us some valuable information and
help us examine trends. In figure 4.5, you can see a plot in which the horizontal axis represents
the degree of the polynomial in the model and the vertical axis represents the value of the error.
The diamonds represent the training error, and the circles represent the validation error. This is
the model complexity graph.

Er
ro

r (
m

ea
n

ab
so

lu
te

 e
rr

or
)

Complexity of the model (degree of the polynomial)

1

Training error
Validation error

Best model

2 3 4 5 6 7 8 9 10

Figure 4.5  The model complexity graph is an effective tool to help us determine the ideal complexity of a
model to avoid underfitting and overfitting. In this model complexity graph, the horizontal axis represents the
degree of several polynomial regression models, from 0 to 10 (i.e., the complexity of the model). The vertical axis
represents the error, which in this case is given by the mean absolute error. Notice that the training error starts
large and decreases as we move to the right. This is because the more complex our model is, the better it can
fit the training data. The validation error, however, starts large, then decreases, and then increases again—very
simple models can’t fit our data well (they underfit), whereas very complex models fit our training data but not
our validation data because they overfit. A happy point in the middle is where our model neither underfits or
overfits, and we can find it using the model complexity graph.

86	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

Notice that in the model complexity graph in figure 4.5, the lowest value for the validation error
occurs at degree 4, which means that for this dataset, the best-fitting model (among the ones we
are considering) is a polynomial regression model of degree 4. Looking at the left of the graph,
we can see that when the degree of the polynomial is small, both the training and the validation
errors are large, which implies that the models underfit. Looking at the right of the graph, we can
see that the training error gets smaller and smaller, but the validation error gets larger and larger,
which implies that the models overfit. The sweet spot happens around 4, which is the model
we pick.

One benefit of the model complexity graph is that no matter how large our dataset is or how
many different models we try, it always looks like two curves: one that always goes down (the
training error) and one that goes down and then back up (the validation error). Of course, in a
large and complex dataset, these curves may oscillate, and the behavior may be harder to spot.
However, the model complexity graph is always a useful tool for data scientists to find a good
spot in this graph and decide how complex their models should be to avoid both underfitting and
overfitting.

Why do we need such a graph if all we need to do is pick the model with the lowest validation
error? This method is true in theory, but in practice, as a data scientist, you may have a much
better idea of the problem you are solving, the constraints, and the benchmarks. If you see, for
example, that the model with the smallest validation error is still quite complex, and that there
is a much simpler model that has only a slightly higher validation error, you may be more inclined
to pick that one. A great data scientist is one who can combine these theoretical tools with their
knowledge about the use case to build the best and most effective models.

Another alternative to avoiding overfitting:
Regularization
In this section, we discuss another useful technique to avoid overfitting in our models that
doesn’t require a testing set: regularization. Regularization relies on the same observation we
made in the section “An example of underfitting and overfitting using polynomial regression,”
where we concluded that simple models tend to underfit and complex models tend to overfit.
However, in the previous methods, we tested several models and selected the one that best bal-
anced performance and complexity. In contrast, when we use regularization, we don’t need to
train several models. We simply train the model once, but during the training, we try to not only
improve the model’s performance but also reduce its complexity. The key to doing this is to mea-
sure both performance and complexity at the same time.

Before we get into the details, let’s discuss an analogy for thinking about measuring the per-
formance and complexity of models. Imagine that we have three houses, and all of them have the
same problem—the roof is leaking (figure 4.6). Three roofers come, and each fixes one of the
houses. The first roofer used a bandage, the second one used roofing shingles, and the third one
used titanium. From our intuition, it seems that the best one is roofer 2, because roofer 1 over-
simplified the problem (underfitting) and roofer 3 overcomplicated it (overfitting).

	 Another alternative to avoiding overfitting: Regularization� 87

Problem: Broken roof

Roofer 1
Solution: Bandage

(Underfitting)

Roofer 2
Solution: Shingles

(Correct)

Roofer 3
Solution: Titanium

(Over!tting)

Figure 4.6  An analogy for underfitting and overfitting. Our problem consists of a broken roof. We have three
roofers who can fix it. Roofer 1 comes with a bandage, roofer 2 comes with roofing shingles, and roofer 3 comes
with a block of titanium. Roofer 1 oversimplified the problem, so they represent underfitting. Roofer 2 used a
good solution. Roofer 3 overcomplicated the solution, so they represent overfitting.

However, we need to make our decisions using numbers, so let’s take some measurements. The
way to measure the performance of the roofers is by how much water leaked after they fix their
roof. They had the following scores:

Performance (in mL of water leaked)

Roofer 1: 1000 mL water

Roofer 2: 1 mL water

Roofer 3: 0 mL water

It seems that roofer 1 had a terrible performance, because the roof was still leaking water.
However, between roofers 2 and 3, which one do we pick? Perhaps roofer 3, who had a better
performance? The performance measure is not good enough; it correctly removes roofer 1 from
the equation, but it erroneously tells us to go with roofer 3, instead of roofer 2. We need a mea-
sure of their complexity to help us make the right decision. A good measure of their complexity
is how much they charged us to fix the roof, in dollars. The prices were as follows:

Complexity (in price)

Roofer 1: $1

Roofer 2: $100

Roofer 3: $100,000

88	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

Now we can tell that roofer 2 is better than roofer 3, because they had the same performance, but
roofer 2 charged less. However, roofer 1 was the cheapest one—why on’t we go with this one? It
seems that what we need is to combine the measures of performance and complexity. We can add
the amount of water that the roof leaked and the price, to get the following:

Performance + complexity

Roofer 1: 1001

Roofer 2: 101

Roofer 3: 100,000

Now it is clear that roofer 2 is the best one, which means that optimizing performance and com-
plexity at the same time yields good results that are also as simple as possible. This is what regu-
larization is about: measuring performance and complexity with two different error functions,
and adding them to get a more robust error function. This new error function ensures that our
model performs well and is not very complex. In the following sections, we get into more details
on how to define these two error functions. But before that, let’s look at another overfitting
example.

Another example of overfitting: Movie recommendations
In this section, we learn a more subtle way in which a model may overfit—this time not related
to the degree of the polynomial but on the number of features and the size of the coefficients.
Imagine that we have a movie streaming website, and we are trying to build a recommender sys-
tem. For simplicity, imagine that we have only 10 movies: M1, M2, …, M10. A new movie, M11,
comes out, and we’d like to build a linear regression model to recommend movie 11 based on the
previous 10. We have a dataset of 100 users. For each user, we have 10 features, which are the
times (in seconds) that the user has watched each of the original 10 movies. If the user hasn’t
watched a movie, then this amount is 0. The label for each user is the amount of time the user
watched movie 11. We want to build a model that fits this dataset. Given that the model is a linear
regression model, the equation for the predicted time the user will watch movie 11 is linear, and
it will look like the following:

ŷ = w
1
x

1
 + w

2
x

2
 + w

3
x

3
+ w

4
x

4
 + w

5
x

5
 + w

6
x

6
 + w

7
x

7
 + w

8
x

8
 ++ w

9
x

9
 + w

10
x

10
 + b,

where

•	 ŷ is the amount of time the model predicts that the user will watch movie 11,

•	 x
i
 is the amount of time the user watched movie i, for i = 1, 2, …, 10,

•	 w
i
 is the weight associated to movie i, and

•	 b is the bias.

Now let’s test our intuition. Out of the following two models (given by their equation), which one
(or ones) looks like it may be overfitting?

	 Another alternative to avoiding overfitting: Regularization� 89

Model 1: ŷ = 2x
3
 + 1.4x

7
 – 0.5x

7
 + 4

Model 2: ŷ = 22x
1
 – 103x

2
 – 14x

3
 + 109x

4
 – 93x

5
 + 203x

6
 + 87x

7
 – 55x

8
 + 378x

9
 – 25x

10
 + 8

If you think like me, model 2 seems a bit complicated, and it may be the one overfitting. The
intuition here is that it’s unlikely that the time that a user watched movie 2 needs to be multiplied
by –103 and then added to other numbers to obtain the prediction. This may fit the data well, but
it definitely looks like it’s memorizing the data instead of learning it.

Model 1, in contrast, looks much simpler, and it gives us some interesting information. From
the fact that most of the coefficients are zero, except those for movies 3, 7, and 9, it tells us that
the only three movies that are related to movie 11 are those three movies. Furthermore, from the
fact that the coefficients of movies 3 and 7 are positive, the model tells us that if a user watched
movie 3 or movie 7, then they are likely to watch movie 11. Because the coefficient of movie 9 is
negative, then if the user watched movie 9, they are not likely to watch movie 11.

Our goal is to have a model like model 1 and to avoid models like model 2. But unfortu-
nately, if model 2 produces a smaller error than model 2, then running the linear regression
algorithm will select model 2 instead. What can we do? Here is where regularization comes to
the rescue. The first thing we need is a measure that tells us that model 2 is much more com-
plex than model 1.

Measuring how complex a model is: L1 and L2 norm
In this section, we learn two ways to measure the complexity of a model. But before this, let’s look
at models 1 and 2 from the previous section and try to come up with some formula that is low for
model 1 and high for model 2.

Notice that a model with more coefficients, or coefficients of higher value, tends to be more
complex. Therefore, any formula that matches this will work, such as the following:

•	 The sum of the absolute values of the coefficients

•	 The sum of the squares of the coefficients

The first one is called the L1 norm, and the second one is called the L2 norm. They come from a
more general theory of LP spaces, named after the French mathematician Henri Lebesgue. We
use absolute values and squares to get rid of the negative coefficients; otherwise, large negative
numbers will cancel out with large positive numbers, and we may end up with a small value for
a very complex model.

But before we start calculating the norms, a small technicality: the bias in the models is not
included in the L1 and L2 norm. Why? Well, the bias in the model is precisely the number of
seconds that we expect a user to watch movie 11 if they haven’t watched any of the previous 10
movies. This number is not associated with the complexity of the model; therefore, we leave it
alone. The calculation of the L1 norm for models 1 and 2 follows.

Recall that the equations for the models are the following:

Model 1: ŷ = 2x
3
 + 1.4x

7
 – 0.5x

7
 + 8

Model 2: ŷ = 22x
1
 – 103x

2
 – 14x

3
 + 109x

4
 – 93x

5
 + 203x

6
 + 87x

7
 – 55x

8
 + 378x

9
 – 25x

10
 + 8

90	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

L1 norm:

•	 Model 1: |2| + |1.4| + |–0.5| = 3.9

•	 Model 2: |22| + |–103| + |–14| + |109| + |–93| + |203| + |87| + |–55| + |378| + |–25| = 1,089

L2 norm:

•	 Model 1: 22 + 1.42 + (–0.5)2 = 6.21

•	 Model 2: 222 + (–103)2 + (–14)2 + 1092 + (-93)2 + 2032 + 872 + (–55)2 + 3782 + (–25)2 = 227,131

As expected, both the L1 and L2 norms of model 2 are much larger than the corresponding
norms of model 1.

The L1 and L2 norm can also be calculated on polynomials by taking either the sum of abso-
lute values or the sum of squares of the coefficients, except for the constant coefficient. Let’s go
back to the example at the beginning of this chapter, where our three models were a polynomial
of degree 1 (a line), degree 2 (a parabola), and degree 10 (a curve that oscillates 9 times). Imagine
that their formulas are the following:

•	 Model 1: ŷ = 2x + 3

•	 Model 2: ŷ = –x2 + 6x – 2

•	 Model 3: ŷ = x9 + 4x8 – 9x7 + 3x6 – 14x5 – 2x4 – 9x3 + x2 + 6x + 10

The L1 and L2 norms are calculated as follows:

L1 norm:

•	 Model 1: |2| = 2

•	 Model 2: |–1| + |6| = 7

•	 Model 3: |1| + |4| + |–9| + |3| + |–14| + |–2| + |–9| + |1| + |6| = 49

L2 norm:

•	 Model 1: 22 = 2

•	 Model 2: (–1)2 + 62 = 37

•	 Model 3: 12 + 42 + (–9)2 + 32 + (–14)2 + (–2)2 + (–9)2 + 12 + 62 = 425

Now that we are equipped with two ways to measure the complexity of the models, let’s embark
into the training process.

Modifying the error function to solve our problem: Lasso regression
and ridge regression
Now that we’ve done most of the heavy lifting, we’ll train a linear regression model using regu-
larization. We have two measures for our model: a measure of performance (the error function)
and a measure of complexity (the L1 or L2 norm).

	 Another alternative to avoiding overfitting: Regularization� 91

Recall that in the roofer analogy, our goal was to find a roofer that provided both good quality
and low complexity. We did this by minimizing the sum of two numbers: the measure of quality
and the measure of complexity. Regularization consists of applying the same principle to our
machine learning model. For this, we have two quantities: the regression error and the regular-
ization term.

regression error  A measure of the quality of the model. In this case, it can be the absolute
or square errors that we learned in chapter 3.

regularization term  A measure of the complexity of the model. It can be the L1 or the L2
norm of the model.

The quantity that we want to minimize to find a good and not too complex model is the modi-
fied error, defined as the sum of the two, as shown next:

Error = Regression error + Regularization term

Regularization is so common that the models themselves have different names based on what
norm is used. If we train our regression model using the L1 norm, the model is called lasso regres-
sion. Lasso stands for “least absolute shrinkage and selection operator.” The error function
follows:

Lasso regression error = Regression error + L1 norm

If, instead, we train the model using the L2 norm, it is called ridge regression. The name ridge
comes from the shape of the error function, because adding the L2 norm term to the regression
error function turns a sharp corner into a smooth valley when we plot it. The error function
follows:

Ridge regression error = Regression error + L2 norm

Both lasso and ridge regression work well in practice. The decision of which one to use comes
down to some preferences that we’ll learn about in the upcoming sections. But before we get to
that, we need to work out some details to make sure our regularized models work well.

Regulating the amount of performance and complexity in our model:
The regularization parameter
Because the process of training the model involves reducing the cost function as much as possi-
ble, a model trained with regularization, in principle, should have high performance and low
complexity. However, there is some tug-of-war—trying to make the model perform better may
make it more complex, whereas trying to reduce the complexity of the model may make it per-
form worse. Fortunately, most machine learning techniques come with knobs (hyperparame-
ters) for the data scientist to turn and build the best possible models, and regularization is not an
exception. In this section, we see how to use a hyperparameter to regulate between performance
and complexity.

92	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

This hyperparameter is called the regularization parameter, and its goal is to determine if
the model-training process should emphasize performance or simplicity. The regularization
parameter is denoted by l, the Greek letter lambda. We multiply the regularization term by l,
add it to the regression error, and use that result to train our model. The new error becomes the
following:

Error = Regression error + l Regularization term

Picking a value of 0 for l cancels out the regularization term, and thus we end up with the same
regression model we had in chapter 3. Picking a large value for l results in a simple model, per-
haps of low degree, which may not fit our dataset very well. It is crucial to pick a good value for
l, and for this, validation is a useful technique. It is typical to choose powers of 10, such as 10, 1,
0.1, 0.01, but this choice is somewhat arbitrary. Among these, we select the one that makes our
model perform best in our validation set.

Effects of L1 and L2 regularization in the coefficients of the model
In this section, we see crucial differences between L1 and L2 regularization and get some ideas
about which one to use in different scenarios. At first glance, they look similar, but the effects
they have on the coefficients is interesting, and, depending on what type of model we want,
deciding between using L1 and L2 regularization can be critical.

Let’s go back to our movie recommendation example, where we are building a regression
model to predict the amount of time (in seconds) that a user will watch a movie, given the time
that same user has watched 10 different movies. Imagine that we’ve trained the model, and the
equation we get is the following:

Model: ŷ = 22x
1
 – 103x

2
 – 14x

3
 + 109x

4
 – 93x

5
 + 203x

6
 + 87x

7
 – 55x

8
 + 378x

9
 – 25x

10
 + 8

If we add regularization and train the model again, we end up with a simpler model. The follow-
ing two properties can be shown mathematically:

•	 If we use L1 regularization (lasso regression), you end up with a model with fewer
coefficients. In other words, L1 regularization turns some of the coefficients into zero.
Thus, we may end up with an equation like ŷ = 2x

3
 + 1.4x

7
 – 0.5x

9
 + 8.

•	 If we use L2 regularization (ridge regression), we end up with a model with smaller
coefficients. In other words, L2 regularization shrinks all the coefficients but rarely turns
them into zero. Thus, we may end up with an equation like ŷ = 0.2x

1
 – 0.8x

2
 – 1.1x

3
 +

2.4x
4
 – 0.03x

5
 + 1.02x

6
 + 3.1x

7
 – 2x

8
 + 2.9x

9
 – 0.04x

10
 + 8.

Thus, depending on what kind of equation we want to get, we can decide between using L1 and
L2 regularization.

A quick rule of thumb to use when deciding if we want to use L1 or L2 regularization follows:
if we have too many features and we’d like to get rid of most of them, L1 regularization is perfect
for that. If we have only few features and believe they are all relevant, then L2 regularization is
what we need, because it won’t get rid of our useful features.

	 Another alternative to avoiding overfitting: Regularization� 93

An example of a problem in which we have many features and L1 regularization can help us is
the movie recommendation system we studied in the section “Another example of overfitting:
Movie recommendations.” In this model, each feature corresponded to one of the movies, and
our goal is to find the few movies that were related to the one we’re interested in. Thus, we need
a model for which most of the coefficients are zero, except for a few of them.

An example in which we should use L2 regularization is the polynomial example at the begin-
ning of the section “An example of underfitting using polynomial regression.” For this model, we
had only one feature: x. L2 regularization would give us a good polynomial model with small
coefficients, which wouldn’t oscillate very much and, thus, is less prone to overfitting. In the
section “Polynomial regression, testing, and regularization with Turi Create,” we will see a poly-
nomial example for which L2 regularization is the right one to use.

The resources corresponding to this chapter (appendix C) point to some places where you can
dig deeper into the mathematical reasons why L1 regularization turns coefficients into zero,
whereas L2 regularization turns them into small numbers. In the next section, we will learn how
to get an intuition for it.

An intuitive way to see regularization
In this section, we learn how the L1 and L2 norms differ in the way they penalize complexity.
This section is mostly intuitive and is developed in an example, but if you’d like to see the formal
mathematics behind them, please look at appendix B, “Using gradient descent for regularization.”

When we try to understand how a machine learning model operates, we should look beyond
the error function. An error function says, “This is the error, and if you reduce it, you end up
with a good model.” But that is like saying, “The secret to succeeding in life is to make as few
mistakes as possible.” Isn’t a positive message better, such as, “These are the things you can do to
improve your life,” as opposed to “These are the things you should avoid”? Let’s see regulariza-
tion in this way.

In chapter 3, we learned the absolute and the square tricks, which give us a clearer glimpse into
regression. At each stage in the training process, we simply pick a point (or several points) and move
the line closer to those points. Repeating this process many times will eventually yield a good line fit.
We can be more specific and repeat how we defined the linear regression algorithm in chapter 3.

Pseudocode for the linear regression algorithm
Inputs: A dataset of points

Outputs: A linear regression model that fits that dataset

Procedure:

•	 Pick a model with random weights and a random bias.

•	 Repeat many times:

	– Pick a random data point.

	– Slightly adjust the weights and bias to improve the prediction for that data point.

•	 Enjoy your model!

94	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

Can we use the same reasoning to understand regularization? Yes, we can.
To simplify things, let’s say that we are in the middle of our training, and we want to make the

model simpler. We can do this by reducing the coefficients. For simplicity, let’s say that our
model has three coefficients: 3, 10, and 18. Can we take a small step to decrease these three by a
small amount? Of course we can, and here are two methods to do it. Both require a small num-
ber, l, which we’ll set to 0.01 for now.

Method 1: Subtract l from each of the positive parameters, and add l to each of the negative
parameters. If they are zero, leave them alone.

Method 2: Multiply all of them by 1 – l. Notice that this number is close to 1, because l is small.

Using method 1, we get the numbers 2.99, 9.99, and 17.99.

Using method 2, we get the numbers 2.97, 9.9, and 17.82.

In this case, l behaves very much like a learning rate. In fact, it is closely related to the regular-
ization rate (see “Using gradient descent for regularization” in appendix B for details). Notice
that in both methods, we are shrinking the size of the coefficients. Now, all we have to do is to
repeatedly shrink the coefficients at every stage of the algorithm. In other words, here is how we
train the model now:

Inputs: A dataset of points

Outputs: A linear regression model that fits that dataset

Procedure:

•	 Pick a model with random weights and a random bias.

•	 Repeat many times:

	– Pick a random data point.

	– Slightly adjust the weights and bias to improve the prediction for that particular data
point.

	– Slightly shrink the coefficients using method 1 or method 2.

•	 Enjoy your model!

If we use method 1, we are training the model with L1 regularization, or lasso regression. If we
use method 2, we are training it with L2 regularization, or ridge regression. There is a mathematical
justification for this, which is described in appendix B, “Using gradient descent for regularization.”

In the previous section, we learned that L1 regularization tends to turn many coefficients into
0, whereas L2 regularization tends to decrease them but not turn them into zero. This phenom-
enon is now easier to see. Let’s say that our coefficient is 2, with a regularization parameter of
l = 0.01. Notice what happens if we use method 1 to shrink our coefficient, and we repeat this
process 200 times. We get the following sequence of values:

2 → 1.99 → 1.98 → … → 0.02 → 0.01 → 0

	 Polynomial regression, testing, and regularization with Turi Create� 95

After 200 epochs of our training, the coefficient becomes 0, and it never changes again. Now let’s
see what would happen if we apply method 2, again 200 times and with the same learning rate of
h = 0.01. We get the following sequence of values:

2 → 1.98 → 1.9602 → … → 0.2734 → 0.2707 → 0.2680

Notice that the coefficient decreased dramatically, but it didn’t become zero. In fact, no matter
how many epochs we run, the coefficient will never become zero. This is because when we mul-
tiply a non-negative number by 0.99 many times, the number will never become zero. This is
illustrated in figure 4.7.

L1 regularization L2 regularization

Figure 4.7  Both L1 and L2 shrink the size of the coefficient. L1 regularization (left) does it much faster, because
it subtracts a fixed amount, so it is likely to eventually become zero. L2 regularization takes much longer,
because it multiplies the coefficient by a small factor, so it never reaches zero.

Polynomial regression, testing, and regularization
with Turi Create
In this section, we see an example of polynomial regression with regularization in Turi Create.
Here is the code for this section:

•	 Notebook:

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_4_Testing_
Overfitting_Underfitting/Polynomial_regression_regularization.ipynb

We start with our dataset, which is illustrated in figure 4.8. We can see the curve that best fits this
data is a parabola that opens downward (a sad face). Therefore, it is not a problem we can solve

https://github.com/luisguiserrano/manning/blob/master/Chapter_4_Testing_Overfitting_Underfitting/Polynomial_regression_regularization.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_4_Testing_Overfitting_Underfitting/Polynomial_regression_regularization.ipynb

96	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

with linear regression—we must use polynomial regression. The dataset is stored in an SFrame
called data, and the first few rows are shown in table 4.1.

Figure 4.8  The dataset. Notice that its shape is a parabola that opens downward, so using linear regression
won’t work well. We’ll use polynomial regression to fit this dataset, and we’ll use regularization to tune our
model.

Table 4.1  The first four rows of our dataset

x y

3.4442185152504816 6.685961311021467

-2.4108324970703663 4.690236225597948

0.11274721368608542 12.205789026637378

-1.9668727392107255 11.133217991032268

The way to do polynomial regression in Turi Create is to add many columns to our dataset, cor-
responding to the powers of the main feature, and to apply linear regression to this expanded
dataset. If the main feature is, say, x, then we add columns with the values of x2, x3, x4, and so on.
Thus, our model is finding linear combinations of the powers of x, which are precisely polyno-
mials in x. If the SFrame containing our data is called data, we use the following code to add
columns for powers up to x199. The first few rows and columns of the resulting dataset appear in
table 4.2.

for i in range(2,200):
 string = 'x^'+str(i)
 data[string] = data['x'].apply(lambda x:x**i)

	 Polynomial regression, testing, and regularization with Turi Create� 97

Table 4.2  The top four rows and the leftmost five columns of our dataset. The column labeled
x^k corresponds to the variable x^k, for k = 2, 3, and 4. The dataset has 200 columns.

x y x^2 x^3 x^4

3.445 6.686 11.863 40.858 140.722

–2.411 4.690 5.812 –14.012 33.781

0.113 12.206 0.013 0.001 0.000

–1.967 11.133 3.869 –7.609 14.966

Now, we apply linear regression to this large dataset with 200 columns. Notice that a linear
regression model in this dataset looks like a linear combination of the variables in the columns.
But because each column corresponds to a monomial, then the model obtained looks like a poly-
nomial on the variable x.

Before we train any models, we need to split the data into training and testing datasets, using
the following line of code:

train, test = data.random_split(.8)

Now our dataset is split into two datasets, the training set called train and the testing set called
test. In the repository, a random seed is specified, so we always get the same results, although this
is not necessary in practice.

The way to use regularization in Turi Create is simple: all we need to do is specify the param-
eters l1_penalty and l2_penalty in the create method when we train the model. This penalty
is precisely the regularization parameter we introduced in the section “Regulating the amount of
performance and complexity in our model.” A penalty of 0 means we are not using regulariza-
tion. Thus, we will train three different models with the following parameters:

•	 No regularization model:

	– l1_penalty=0

	– l2_penalty=0

•	 L1 regularization model:

	– l1_penalty=0.1

	– l2_penalty=0

•	 L2 regularization model:

	– l1_penalty=0

	– l2_penalty=0.1

We train the models with the following three lines of code:

98	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

model_no_reg = tc.linear_regression.create(train, target='y', l1_penalty=0.0,
l2_penalty=0.0)

model_L1_reg = tc.linear_regression.create(train, target='y', l1_penalty=0.1,
l2_penalty=0.0)

model_L2_reg = tc.linear_regression.create(train, target='y', l1_penalty=0.0,
l2_penalty=0.1)

The first model uses no regularization, the second one uses L1 regularization with a parameter
of 0.1, and the third uses L2 regularization with a parameter of 0.1. The plots of the resulting
functions are shown in figure 4.9. Notice that in this figure, the points in the training set are
circles, and those in the testing set are triangles.

No regularization L1 regularization L2 regularization

Testing RMSE: 10.08Testing RMSE: 699.03 Testing RMSE: 3.41

Figure 4.9  Three polynomial regression models for our dataset. The model on the left has no regularization,
the model in the middle has L1 regularization with a parameter of 0.1, and the model on the right has L2
regularization with a parameter of 0.1.

Notice that the model with no regularization fits the training points really well, but it’s chaotic
and doesn’t fit the testing points well. The model with L1 regularization does OK with both the
training and the testing sets. But the model with L2 regularization does a wonderful job with
both the training and the testing sets and also seems to be the one that really captures the shape
of the data.

Also note that for the three models, the boundary curve goes a bit crazy on the end points.
This is completely understandable, because the endpoints have less data, and it is natural for the
model to not know what to do when there’s no data. We should always evaluate models by how
well they perform inside the boundaries of our dataset, and we should never expect a model to
do well outside of those boundaries. Even we humans may not be able to make good predictions
outside of the boundaries of the model. For instance, how do you think this curve would look
outside of the dataset? Would it continue as parabola that opens downward? Would it oscillate
forever like a sine function? If we don’t know this, we shouldn’t expect the model to know it.
Thus, try to ignore the strange behavior at the end points in figure 4.9, and focus on the behavior
of the model inside the interval where the data is located.

To find the testing error, we use the following line of code, with the corresponding name of
the model. This line of code returns the maximum error and the root mean square error (RMSE).

model.predict(test)

Polynomial regression, testing, and regularization with Turi Create� 99

The testing RMSE for the models follow:

• Model with no regularization: 699.03

• Model with L1 regularization: 10.08

• Model with L2 regularization: 3.41

The model with no regularization had a really large RMSE! Among the other two models, the
one with L2 regularization performed much better. Here are two questions to think about:

1. Why did the model with L2 regularization perform better than the one with L1
regularization?

2. Why does the model with L1 regularization look flat, whereas the model with L2
regularization managed to capture the shape of the data?

The two questions have a similar answer, and to find it, we can look at the coefficients of the
polynomials. These can be obtained with the following line of code:

model.coefficients

Each polynomial has 200 coefficients, so we won’t display all of them here, but in table 4.3 you
can see the first five coefficients for the three models. What do you notice?

Table 4.3  The first five coefficients of the polynomials in our three models. Note that the
model with no regularization has large coefficients, the model with L1 regularization has
coefficients very close to 0, and the model with L2 regularization has small coefficients.

Coefficient model_no_reg model_L1_reg model_L2_reg

x0 = 1 8.41 0.57 13.24

x1 15.87 0.07 0.87

x2 108.87 –0.004 –0.52

x3 –212.89 0.0002 0.006

x4 –97.13 –0.0002 –0.02

To interpret table 4.3, we see the predictions for the three models are polynomials of degree 200.
The first terms look as follows:

• Model with no regularization: ŷ = 8.41 + 15.87x + 108.87x2 – 212.89x3 – 97.13x4 + …

• Model with L1 regularization: ŷ = 0.57 + 0.07x – 0.004x2 + 0.0002x3 – 0.0002x4 + …

• Model with L2 regularization: ŷ = 13.24 + 0.87x – 0.52x2 + 0.006x3 – 0.02x4 + …

100	 Chapter 4 I Optimizing the training process: Underfitting, overfitting, testing, and regularization

From these polynomials, we see the following:

•	 For the model with no regularization, all the coefficients are large. This means the
polynomial is chaotic and not good for making predictions.

•	 For the model with L1 regularization, all the coefficients, except for the constant one
(the first one), are tiny—almost 0. This means that for the values close to zero, the
polynomial looks a lot like the horizontal line with equation ŷ = 0.57. This is better than
the previous model but still not great for making predictions.

•	 For the model with L2 regularization, the coefficients get smaller as the degree grows but
are still not so small. This gives us a decent polynomial for making predictions.

Summary
•	 When it comes to training models, many problems arise. Two problems that come up

quite often are underfitting and overfitting.

•	 Underfitting occurs when we use a very simple model to fit our dataset. Overfitting
occurs when we use an overly complex model to fit our dataset.

•	 An effective way to tell overfitting and underfitting apart is by using a testing dataset.

•	 To test a model, we split the data into two sets: a training set and a testing set. The
training set is used to train the model, and the testing set is used to evaluate the model.

•	 The golden rule of machine learning is to never use our testing data for training or
making decisions in our models.

•	 The validation set is another portion of our dataset that we use to make decisions about
the hyperparameters in our model.

•	 A model that underfits will perform poorly in the training set and in the validation set. A
model that overfits will perform well in the training set but poorly in the validation set.
A good model will perform well on both the training and the validation sets.

•	 The model complexity graph is used to determine the correct complexity of a model, so
that it doesn’t underfit or overfit.

•	 Regularization is a very important technique to reduce overfitting in machine learning
models. It consists of adding a measure of complexity (regularization term) to the error
function during the training process.

•	 The L1 and L2 norms are the two most common measures of complexity used in
regularization.

•	 Using the L1 norm leads to L1 regularization, or lasso regression. Using the L2 norm
leads to L2 regularization, or ridge regression.

	 Exercises� 101

•	 L1 regularization is recommended when our dataset has numerous features, and we want
to turn many of them into zero. L2 regularization is recommended when our dataset has
few features, and we want to make them small but not zero.

Exercises
Exercise 4.1

We have trained four models in the same dataset with different hyperparameters. In the follow-
ing table we have recorded the training and testing errors for each of the models.

Model Training error Testing error

1 0.1 1.8

2 0.4 1.2

3 0.6 0.8

4 1.9 2.3

a.	 Which model would you select for this dataset?

b.	 Which model looks like it’s underfitting the data?

c.	 Which model looks like it’s overfitting the data?

Exercise 4.2

We are given the following dataset:

x y

1 2

2 2.5

3 6

4 14.5

5 34

We train the polynomial regression model that predicts the value of y as ŷ, where

ŷ = 2x2 – 5x + 4.

If the regularization parameter is l = 0.1 and the error function we’ve used to train this dataset
is the mean absolute value (MAE), determine the following:

a.	 The lasso regression error of our model (using the L1 norm)

b.	 The ridge regression error of our model (using the L2 norm)

103

In this chapter

•	 what is classification

•	 sentiment analysis: how to tell if a sentence is happy or sad using

machine learning

•	 how to draw a line that separates points of two colors

•	 what is a perceptron, and how do we train it

•	 coding the perceptron algorithm in Python and Turi Create

Using lines to split our points:
The perceptron algorithm 5

then my friends mary and

jane also found the

pattern, but my friends

john and carl didn’t.

my aunt julia found the

pattern. but my uncle bob

didn’t. my mom found it. but

my dad didn’t.

can you guys see

the pattern?

nope.

not a clue.

what is she

talking

about?

a cla cla cl

what

104	 Chapter 5 I Using lines to split our points: The perceptron algorithm

In this chapter, we learn a branch of machine learning called classification. Classification mod-
els are similar to regression models, in that their aim is to predict the labels of a dataset based on
the features. The difference is that regression models aim to predict a number, whereas classifi-
cation models aim to predict a state or a category. Classification models are often called classifi-
ers, and we’ll use the terms interchangeably. Many classifiers predict one of two possible states
(often yes/no), although it is possible to build classifiers that predict among a higher number of
possible states. The following are popular examples of classifiers:

•	 A recommendation model that predicts whether a user will watch a certain movie

•	 An email model that predicts whether an email is spam or ham

•	 A medical model that predicts whether a patient is sick or healthy

•	 An image-recognition model that predicts whether an image contains an automobile, a
bird, a cat, or a dog

•	 A voice recognition model that predicts whether the user said a particular command

Classification is a popular area in machine learning, and the bulk of the chapters in this book
(chapters 5, 6, 8, 9, 10, 11, and 12) talk about different classification models. In this chapter, we
learn the perceptron model, also called the perceptron classifier, or simply the perceptron. A
perceptron is similar to a linear regression model, in that it uses a linear combination of the fea-
tures to make a prediction and is the building block of neural networks (which we learn in chap-
ter 10). Furthermore, the process of training a perceptron is similar to that of training a linear
regression model. Just as we did in chapter 3 with the linear regression algorithm, we develop the
perceptron algorithm in two ways: using a trick that we can iterate many times, and defining an
error function that we can minimize using gradient descent.

The main example of classification models that we learn in this chapter is sentiment analysis.
In sentiment analysis, the goal of the model is to predict the sentiment of a sentence. In other
words, the model predicts whether the sentence is happy or sad. For example, a good sentiment
analysis model can predict that the sentence “I feel wonderful!” is a happy sentence, and that the
sentence “What an awful day!” is a sad sentence.

Sentiment analysis is used in many practical applications, such as the following:

•	 When a company analyzes the conversations between customers and technical support,
to evaluate the quality of the conversation

•	 When analyzing the tone of a brand’s digital presence, such as comments on social media
or reviews related to its products

•	 When a social platform like Twitter analyzes the overall mood of a certain population
after an event

•	 When an investor uses public sentiment toward a company to predict its stock price

How could we build a sentiment analysis classifier? In other words, how could we build a machine
learning model that takes a sentence as an input and, as output, tells us whether the sentence is

	 Using lines to split our points: The perceptron algorithm� 105

happy or sad. This model can make mistakes, of course, but the idea is to build it in such a way
that it makes as few mistakes as possible. Let’s put down the book for a couple of minutes and
think of how we would go about building this type of model.

Here is an idea. Happy sentences tend to contain happy words, such as wonderful, happy, or
joy, whereas sad sentences tend to contain sad words, such as awful, sad, or despair. A classifier
can consist of a “happiness” score for every single word in the dictionary. Happy words can be
given positive scores, and sad words can be given negative scores. Neutral words such as the can
be given a score of zero. When we feed a sentence into our classifier, the classifier simply adds the
scores of all the words in the sentence. If the result is positive, then the classifier concludes that
the sentence is happy. If the result is negative, then the classifier concludes that the sentence is
sad. The goal now is to find scores for all the words in the dictionary. For this, we use machine
learning.

The type of model we just built is called a perceptron model. In this chapter, we learn the for-
mal definition of a perceptron and how to train it by finding the perfect scores for all the words
so that our classifier makes as few mistakes as possible.

The process of training a perceptron is called the perceptron algorithm, and it is not that dif-
ferent from the linear regression algorithm we learned in chapter 3. Here is the idea of the per-
ceptron algorithm: To train the model, we first need a dataset containing many sentences together
with their labels (happy/sad). We start building our classifier by assigning random scores to all
the words. Then we go over all the sentences in our dataset several times. For every sentence, we
slightly tweak the scores so that the classifier improves the prediction for that sentence. How do
we tweak the scores? We do it using a trick called the perceptron trick, which we learn in the
section “The perception trick.” An equivalent way to train perceptron models is to use an error
function, just as we did in chapter 3. We then use gradient descent to minimize this function.

However, language is complicated—it has nuances, double entendres, and sarcasm. Wouldn’t
we lose too much information if we reduce a word to a simple score? The answer is yes—we do
lose a lot of information, and we won’t be able to create a perfect classifier this way. The good
news is that using this method, we can still create a classifier that is correct most of the time. Here
is a proof that the method we are using can’t be correct all the time. The sentences, “I am not sad,
I’m happy” and “I am not happy, I am sad” have the same words, yet completely different mean-
ings. Therefore, no matter what scores we give the words, these two sentences will attain the
exact same score, and, thus, the classifier will return the same prediction for them. They have
different labels, so the classifier must have made a mistake with one of them.

A solution for this problem is to build a classifier that takes the order of the words into account,
or even other things such as punctuation or idioms. Some models such as hidden Markov models
(HMM), recurrent neural networks (RNN), or long short-term memory networks (LSTM) have
had great success with sequential data, but we won’t include them in this book. However, if you
want to explore these models, in appendix C you can find some very useful references for that.

You can find all the code for this chapter in the following GitHub repository: https://github
.com/luisguiserrano/manning/tree/master/Chapter_5_Perceptron_Algorithm.

https://github.com/luisguiserrano/manning/tree/master/Chapter_5_Perceptron_Algorithm
https://github.com/luisguiserrano/manning/tree/master/Chapter_5_Perceptron_Algorithm

106	 Chapter 5 I Using lines to split our points: The perceptron algorithm

The problem: We are on an alien planet,
and we don’t know their language!
Imagine the following scenario: we are astronauts and have just landed on a distant planet
where a race of unknown aliens live. We would love to be able to communicate with the aliens,
but they speak a strange language that we don’t understand. We notice that the aliens have
two moods, happy and sad. Our first step in communicating with them is to figure out if
they are happy or sad based on what they say. In other words, we want to build a sentiment
analysis classifier.

We manage to befriend four aliens, and we start observing their mood and studying what they
say. We observe that two of them are happy and two of them are sad. They also keep repeating
the same sentence over and over. Their language seems to only have two words: aack and beep.
We form the following dataset with the sentence they say and their mood:

Dataset:

•	 Alien 1

	– Mood: Happy

	– Sentence: “Aack, aack, aack!”

•	 Alien 2:

	– Mood: Sad

	– Sentence: “Beep beep!”

•	 Alien 3:

	– Mood: Happy

	– Sentence: “Aack beep aack!”

•	 Alien 4:

	– Mood: Sad

	– Sentence: “Aack beep beep beep!”

All of a sudden, a fifth alien comes in, and it says, “Aack beep aack aack!” We can’t really tell the
mood of this alien. From what we know, how should we predict for the mood of the alien (fig-
ure 5.1)?

We predict that this alien is happy because, even though we don’t know the language, the word
aack seems to appear more in happy sentences, whereas the word beep seems to appear more in
sad sentences. Perhaps aack means something positive, such as “joy” or “happiness,” whereas
beep may mean something sad, such as “despair” or “sadness.”

	 The problem: We are on an alien planet, and we don’t know their language! � 107

Aack aack aack!

Beep beep!

Aack beep aack!

Aack beep beep beep!

Aack beep aack aack!

Data P tionredic

Is this alien happy or sad?

Figure 5.1  Our dataset of aliens. We have recorded their mood (happy or sad) and the sentence they keep
repeating. Now a fifth alien comes in, saying a different sentence. Do we predict that this alien is happy or sad?

This observation gives rise to our first sentiment analysis classifier. This classifier makes a pre-
diction in the following way: it counts the number of appearances of the words aack and beep. If
the number of appearances of aack is larger than that of beep, then the classifier predicts that the
sentence is happy. If it is smaller, then the classifier predicts that the sentence is sad. What hap-
pens when both words appear the same number of times? We have no basis to tell, so let’s say that
by default, the prediction is that the sentence is happy. In practice, these types of edge cases don’t
happen often, so they won’t create a big problem for us.

The classifier we just built is a perceptron (also called linear classifier). We can write it in
terms of scores, or weights, in the following way:

Sentiment analysis classifier

Given a sentence, assign the following scores to the words:

Scores:

•	 Aack: 1 point

•	 Beep: –1 points

Rule:
Calculate the score of the sentence by adding the scores of all the words on it as follows:

•	 If the score is positive or zero, predict that the sentence is happy.

•	 If the score is negative, predict that the sentence is sad.

108	 Chapter 5 I Using lines to split our points: The perceptron algorithm

In most situations, it is useful to plot our data, because sometimes nice patterns become visible.
In table 5.1, we have our four aliens, as well as the number of times each said the words aack and
beep, and their mood.

Table 5.1  Our dataset of aliens, the sentences they said, and their mood. We have broken each
sentence down to its number of appearances of the words aack and beep.

Sentence Aack Beep Mood
Aack aack aack! 3 0 Happy

Beep beep! 0 2 Sad

Aack beep aack! 2 1 Happy

Aack beep beep beep! 1 3 Sad

The plot consists of two axes, the horizontal (x) axis and the vertical (y) axis. In the horizontal
axis, we record the number of appearances of aack, and in the vertical axis, the appearances of
beep. This plot can be seen in figure 5.2.

1

2

3

1 2 3

Aack

B
e

e
p

0

Aack: 1
Beep: 3

Aack: 0
Beep: 2

Aack: 2
Beep: 1

Aack: 3
Beep: 0

Figure 5.2  A plot of the dataset of aliens. In the horizontal axis we plot the number of appearances of the word
aack, and in the vertical axis, the appearances of the word beep.

	 The problem: We are on an alien planet, and we don’t know their language! � 109

Note that in the plot in figure 5.2, the happy aliens are located on the bottom right, whereas the
sad aliens are in the top left. This is because the bottom right is the area where the sentences have
more appearances of aack than beep, and the top left area is the opposite. In fact, a line formed
by all the sentences with the same number of appearances of aack and beep divides these two
regions, as shown in figure 5.3. This line has the following equation:

#aack = #beep

Or equivalently, this equation:

#aack – #beep = 0

Throughout this chapter, we’ll use the variables x with different subscripts to indicate the num-
ber of appearances of a word in a sentence. In this case, x

aack
 is the number of times the word aack

appears, and x
beep

 is the number of times the word beep appears.
Using this notation, the equation of the classifier becomes x

aack
 – x

beep
 = 0, or equivalently,

x
aack

 = x
beep

. This is the equation of a line in the plane. If it doesn’t appear so, think of the equation
of the line y = x, except instead of x, we have x

aack
, and instead of y, we have x

beep
. Why not use x

and y instead like we’ve done since high school? I would love to, but unfortunately we need the y
for something else (the prediction) later. Thus, let’s think of the x

aack
-axis as the horizontal axis

and the x
beep

-axis as the vertical axis. Together with this equation, we have two important areas,
which we call the positive zone and the negative zone. They are defined as follows:

Positive zone: The area on the plane for which x
aack

 – x
beep

 ³ 0. This corresponds to the sentences
in which the word aack appears at least as many times as the word beep.

Negative zone: The area on the plane for which x
aack

 – x
beep

 < 0. This corresponds to the sentences
in which the word aack appears fewer times than the word beep.

The classifier we created predicts that every sentence in the positive zone is happy and every sen-
tence in the negative zone is sad. Therefore, our goal is to find the classifier that can put as many
happy sentences as possible in the positive area and as many sad sentences as possible in the
negative area. For this small example, our classifier achieves this job to perfection. This is not
always the case, but the perceptron algorithm will help us find a classifier that will perform this
job really well.

In figure 5.3, we can see the line that corresponds to the classifier and the positive and neg-
ative zones. If you compare figures 5.2 and 5.3, you can see that the current classifier is good,
because all the happy sentences are in the positive zone and all the sad sentences are in the
negative zone.

Now that we’ve built a simple sentiment analysis perceptron classifier, let’s look at a slightly
more complex example.

110	 Chapter 5 I Using lines to split our points: The perceptron algorithm

1

2

3

1 2 3

Aack

B
e

e
p

0

Negative zone

#aack ≥ #beep

Positive zone

#aack ≥ #beep

Figure 5.3  The classifier is the diagonal line that splits the happy and the sad points. The equation of this line
is xaack = xbeep (or equivalently, xaack – xbeep = 0), because the line corresponds to all the points where the horizontal
and the vertical coordinates are equal. The happy zone is the zone in which the number of appearances of aack
is greater than or equal to the number of appearances of beep, and the sad zone is the zone in which the number
of appearances of aack is less than that of beep.

A slightly more complicated planet
In this section, we see a more complicated example, which introduces a new aspect of the percep-
tron: the bias. After we can communicate with the aliens on the first planet, we are sent on a
mission to a second planet, where the aliens have a slightly more complicated language. Our goal
is still the same: to create a sentiment analysis classifier in their language. The language in the
new planet has two words: crack and doink. The dataset is shown in table 5.2.

Building a classifier for this dataset seems to be a bit harder than for the previous dataset.
First of all, should we assign positive or negative scores to the words crack and doink? Let’s
take a pen and paper and try coming up with a classifier that can correctly separate the
happy and sad sentences in this dataset. Looking at the plot of this dataset in figure 5.4 may
be helpful.

	 The problem: We are on an alien planet, and we don’t know their language! � 111

Table 5.2  The new dataset of alien words. Again, we’ve recorded each sentence, the number of
appearances of each word in that sentence, and the mood of the alien.

Sentence Crack Doink Mood

Crack! 1 0 Sad

Doink doink! 0 2 Sad

Crack doink! 1 1 Sad

Crack doink crack! 2 1 Sad

Doink crack doink doink! 1 3 Happy

Crack doink doink crack! 2 2 Happy

Doink doink crack crack crack! 3 2 Happy

Crack doink doink crack doink! 2 3 Happy

D
o

in
k

1

2

3

4

Crack

1 2 3 4

Figure 5.4  The plot of the new dataset of aliens. Notice that the happy ones tend to be above and to the right,
and the sad ones below and to the left.

The idea for this classifier is to count the number of words in a sentence. Notice that the sen-
tences with one, two, or three words are all sad, and the sentences with four and five words are
happy. That is the classifier! It classifies sentences with three words or fewer as sad, and the sen-
tences with four words or more as happy. We can again write this in a more mathematical way.

112	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Sentiment analysis classifier

Given a sentence, assign the following scores to the words:

Scores:

•	 Crack: one point

•	 Doink: one point

Rule:

Calculate the score of the sentence by adding the scores of all the words on it.

•	 If the score is four or more, predict that the sentence is happy.

•	 If the score is three or less, predict that the sentence is sad.

To make it simpler, let’s slightly change the rule by using a cutoff of 3.5.

Rule:

Calculate the score of the sentence by adding the scores of all the words on it.

•	 If the score is 3.5 or more, predict that the sentence is happy.

•	 If the score is less than 3.5, predict that the sentence is sad.

This classifier again corresponds to a line, and that line is illustrated in figure 5.5.

D
o

in
k

1

2

3

4

Crack

1 2 3 4

HappySad

Figure 5.5  The classifier for the new dataset of aliens. It is again a line that splits the happy and the sad aliens.

	 The problem: We are on an alien planet, and we don’t know their language! � 113

In the previous example, we concluded that the word aack was a happy word, and the word beep was
a sad one. What happens in this example? It seems that both words crack and doink are happy,
because their scores are both positive. Why, then, is the sentence “Crack doink” a sad sentence? It
doesn’t have enough words. The aliens on this planet have a distinctive personality. The aliens that
don’t speak much are sad, and those who speak a lot are happy. The way we can interpret it is that
the aliens on this planet are inherently sad, but they can get out of the sadness by talking a lot.

Another important element in this classifier is the cutoff, or threshold, of 3.5. This threshold is used
by the classifier to make the prediction, because sentences with scores higher than or equal to the
threshold are classified as happy, and sentences with scores lower than the threshold are classified as
sad. However, thresholds are not common, and instead we use the notion of a bias. The bias is the
negative of the threshold, and we add it to the score. This way, the classifier can calculate the score and
return a prediction of happy if the score is nonnegative, or sad if it is negative. As a final change in
notation, we’ll call the scores of the words weights. Our classifier can be expressed as follows:

Sentiment analysis classifier

Given a sentence, assign the following weights and bias to the words:

Weights:

•	 Crack: one point

•	 Doink: one point

Bias: –3.5 points

Rule:

Calculate the score of the sentence by adding the weights of all the words on it and the bias.

•	 If the score is greater than or equal to zero, predict that the sentence is happy.

•	 If the score is less than zero, predict that the sentence is sad.

The equation of the score of the classifier, and also of the line in figure 5.5, follows:

#crack + #doink – 3.5 = 0

Notice that defining a perceptron classifier with a threshold of 3.5 and with a bias of –3.5 is the
same thing, because the following two equations are equivalent:

•	 #crack + #doink ≥ 3.5

•	 #crack + #doink – 3.5 ≥ 0

We can use a similar notation as in the previous section, where x
crack

 is the number of appearances
of the word crack and x

doink
 is the number of appearances of the word doink. Thus, the equation

of the line in figure 3.5 can be written as

x
crack

 + x
doink

 – 3.5 = 0.

This line also divides the plane into positive and negative zones, defined as follows:

114	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Positive zone: the area on the plane for which x
crack

 + x
doink

 – 3.5 ³ 0

Negative zone: the area on the plane for which x
crack

 + x
doink

 – 3.5 < 0

Does our classifier need to be correct all the time? No
In the previous two examples, we built a classifier that was correct all the time. In other words, the
classifier classified the two happy sentences as happy and the two sad sentences as sad. This is not
something one finds often in practice, especially in datasets with many points. However, the goal
of the classifier is to classify the points as best as possible. In figure 5.6, we can see a dataset with 17
points (eight happy and nine sad) that is impossible to perfectly split into two using a single line.
However, the line in the picture does a good job, only classifying three points incorrectly.

Aack

Beep

HappySad

Figure 5.6  This line splits the dataset well. Note that it makes only three mistakes: two on the happy zone and
one on the sad zone.

A more general classifier and a slightly different way to define lines
In this section, we get a more general view of the perceptron classifier. For a moment, let’s call
our words 1 and 2, and the variables keeping track of their appearances x

1
 and x

2
. The equations

of the two previous classifiers follow:

•	 x
1
 – x

2
 = 0

•	 x
1
 + x

2
 – 3.5 = 0

The general form of the equation of a perceptron classifier is ax
1
+ bx

2
+ c = 0, where a is the score

of the word 1, b the score of the word 2, and c is the bias. This equation corresponds to a line that
splits the plane into two zones as follows:

	 The problem: We are on an alien planet, and we don’t know their language! � 115

Positive zone: the zone on the plane for which ax
1
 + bx

2
 + c ≥ 0

Negative zone: the zone on the plane for which ax
1
 + bx

2
 + c < 0

For example, if the word 1 has a score of 4, the word 2 has a score of –2.5, and the bias is 1.8, then
the equation of this classifier is

4x
1
 – 2.5x

2
 + 1.8 = 0,

and the positive and negative zones are those where 4x
1
 – 2.5x

2
 + 1.8 ≥ 0 and 4x

1
 – 2.5x

2
 + 1.8 < 0,

respectively.

aside: Equations of lines and zones in the plane  In chapter 3, we defined lines using the
equation y = mx + b on a plane where the axes are x and y. In this chapter, we define them
with the equation ax

1
 + bx

2
 + c = 0 on a plane where the axes are x

1
 and x

2
. How are they

different? They are both perfectly valid ways to define a line. However, whereas the first
equation is useful for linear regression models, the second equation is useful for perceptron
models (and, in general, for other classification algorithms, such as logistic regression, neu-
ral networks, and support vector machines, that we’ll see in chapters 6, 10, and 11, respec-
tively). Why is this equation better for perceptron models? Some advantages follow:

•	 The equation ax
1
 + bx

2
 + c = 0 not only defines a line but also clearly defines the two

zones, positive and negative. If we wanted to have the same line, except with the positive
and negative regions flipped, we would consider the equation –ax

1
 – bx

2
 – c = 0.

•	 Using the equation ax
1
 + bx

2
 + c = 0, we can draw vertical lines, because the equation

of a vertical line is x = c or 1x
1
 + 0x

2
 – c = 0. Although vertical lines don’t often show

up in linear regression models, they do show up in classification models.

HappySad
Happy

Sad
Positive zone

Positive zoneNegative zone

Negative zone

Classifier with equation Classifier with equation

Figure 5.7  A classifier is defined by a line with the equation ax1 + bx2 + c = 0, a positive zone, and a negative
zone. If we want to flip the positive and negative zones, all we need to do is negate the weights and the bias. On
the left we have the classifier with equation ax1 + bx2 + c = 0. On the right, the classifier with flipped zones and
the equation –ax1 – bx2 – c = 0.

116	 Chapter 5 I Using lines to split our points: The perceptron algorithm

The step function and activation functions: A condensed way to get predictions
In this section, we learn a mathematical shortcut to obtain the predictions. Before learning this,
however, we need to turn all our data into numbers. Notice that the labels in our dataset are
“happy” and “sad.” We record these as 1 and 0, respectively.

Both perceptron classifiers that we’ve built in this chapter have been defined using an if state-
ment. Namely, the classifier predicts “happy” or “sad” based on the total score of the sentence; if
this score is positive or zero, the classifier predicts “happy,” and if it is negative, the classifier pre-
dicts “sad.” We have a more direct way to turn the score into a prediction: using the step function.

step function  The function that returns a 1 if the output is nonnegative and a 0 if the
output is negative. In other words, if the input is x, then

•	 step(x) = 1 if x ≥ 0

•	 step(x) = 0 if x < 0

Figure 5.8 shows the graph of the step function.

Figure 5.8  The step function is useful in the study of perceptron models. The output of the step function is 0
when the input is negative and 1 otherwise.

With the step function, we can express the output of the perceptron classifier easily. In our data-
set, we use the variable y to refer to the labels, just as we did in chapter 3. The prediction that the
model makes for the label is denoted ŷ. The output of the perceptron model is written in con-
densed form as

ŷ = step(ax
1
 + bx

2
 + c).

The step function is a specific case of an activation function. The activation function is an
important concept in machine learning, especially in deep learning and will appear again in
chapters 6 and 10. The formal definition of an activation function will come later, because its full
power is used in building neural networks. But for now, we can think of the activation function
as a function we can use to turn the scores into a prediction.

	 The problem: We are on an alien planet, and we don’t know their language! � 117

What happens if I have more than two words? General definition
of the perceptron classifier
In the two alien examples at the beginning of this section, we built perceptron classifiers for lan-
guages with two words. But we can build classifiers with as many words as we want. For example,
if we had a language with three words, say, aack, beep, and crack, the classifier would make pre-
dictions according to the following formula:

ŷ = step(ax
aack

 + bx
beep

 + cx
crack

 + d),

where a, b, and c are the weights of the words aack, beep, and crack, respectively, and d is the bias.
As we saw, the sentiment analysis perceptron classifiers for languages with two words can be

expressed as a line in the plane that splits the happy and the sad points. Sentiment analysis clas-
sifiers for languages with three words can also be represented geometrically. We can imagine the
points as living in three-dimensional space. In this case, each of the axes corresponds to each of
the words aack, beep, and crack, and a sentence corresponds to a point in space for which its three
coordinates are the number of appearances of the three words. Figure 5.9 illustrates an example
in which the sentence containing aack five times, beep eight times, and crack three times, corre-
sponds to the point with coordinates (5, 8, 3).

Aack

Beep

Cra
ck

(5, 8, 3)

8

5

3

Figure 5.9  A sentence with three words can be plotted as a point in space. In this case, a sentence with the
word aack five times, beep eight times, and crack three times is plotted in the point with coordinates (5,8,3).

118	 Chapter 5 I Using lines to split our points: The perceptron algorithm

The way to separate these points is using a plane. The equation with a plane is precisely ax
aack

 +
bx

beep
 + cx

crack
 + d, and this plane is illustrated in figure 5.10.

Aack

Beep

Cra
ck

Figure 5.10  A dataset of sentences with three words is plotted in three dimensions. The classifier is
represented by a plane that splits the space into two regions.

We can build sentiment analysis perceptron classifiers for languages with as many words as we
can. Say our language has n words, that we call 1, 2, … , n. Our dataset consists of m sentences,
which we call x(1), x(2), … , x(m). Each sentence x(1) comes with a label y

i
, which is 1 if the sentence

is happy and 0 if it is sad. The way we record each sentence is using the number of appearances
of each of the n words. Therefore, each sentence corresponds to a row in our dataset and can be
seen as a vector, or an n-tuple of numbers x(i) = (x

1
(i), x

2
(i), … , x

n
(i)), where x

j
(i) is the number of

appearances of the word j in the i-th sentence.
The perceptron classifier consists of n weights (scores), one for each of the n words in our lan-

guage, and a bias. The weights are denoted w
i
 and the bias b. Thus, the prediction that the classi-

fier makes for the sentence x(i) is

ŷ
i
 = step(w

1
x

1
(i) + w

2
x

2
(i) + … +w

n
x

n
(i) + b).

In the same way as the classifiers with two words can be represented geometrically as a line that
cuts the plane into two regions, and the classifiers with three words can be represented as a plane
that cuts the three-dimensional space into two regions, classifiers with n words can also be rep-
resented geometrically. Unfortunately, we need n-dimensions to see them. Humans can see only
three dimensions, so we may have to imagine an (n-1)-dimensional plane (called a hyperplane)
cutting the n-dimensional space into two regions.

	 The problem: We are on an alien planet, and we don’t know their language! � 119

However, the fact that we can’t imagine them geometrically doesn’t mean we can’t have a good
idea of how they work. Imagine if our classifier is built on the English language. Every single
word gets a weight assigned. That is equivalent to going through the dictionary and assigning a
happiness score to each of the words. The result could look something like this:

Weights (scores):

•	 A: 0.1 points

•	 Aardvark: 0.2 points

•	 Aargh: –4 points

•	 …

•	 Joy: 10 points

•	 …

•	 Suffering: –8.5 points

•	 ...

•	 Zygote: 0.4 points

Bias:

•	 –2.3 points

If those were the weights and bias of the classifier, to predict whether a sentence is happy or
sad, we add the scores of all the words on it (with repetitions). If the result is higher than or
equal to 2.3 (the negative of the bias), the sentence is predicted as happy; otherwise, it is pre-
dicted as sad.

Furthermore, this notation works for any example, not only sentiment analysis. If we have a
different problem with different data points, features, and labels, we can encode it using the same
variables. For example, if we have a medical application where we are trying to predict whether a
patient is sick or healthy using n weights and a bias, we can still call the labels y, the features x

i
,

the weights w
i
, and the bias b.

The bias, the y-intercept, and the inherent mood of a quiet alien

So far we have a good idea of what the weights of the classifier mean. Words with positive weights
are happy, and words with negative words are sad. Words with very small weights (whether pos-
itive or negative) are more neutral words. However, what does the bias mean?

In chapter 3, we specified that the bias in a regression model for house prices was the base price
of a house. In other words, it is the predicted price of a hypothetical house with zero rooms (a
studio?). In the perceptron model, the bias can be interpreted as the score of the empty sentence.
In other words, if an alien says absolutely nothing, is this alien happy or sad? If a sentence has no
words, its score is precisely the bias. Thus, if the bias is positive, the alien that says nothing is
happy, and if the bias is negative, that same alien is sad.

120	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Geometrically, the difference between a positive and negative bias lies in the location of the
origin (the point with coordinates (0,0)) with respect to the classifier. This is because the point
with coordinates (0,0) corresponds to the sentence with no words. In classifiers with a positive
bias, the origin lies in the positive zone, whereas in classifiers with a negative bias, the origin lies
in the negative zone, as illustrated in figure 5.11.

Negative bias:

Quiet alien is sad

Positive bias:

Quiet alien is happy

Happy
Sad

Happy
Sad

Figure 5.11  Left: the classifier has a negative bias, or a positive threshold (y-intercept). This means that the alien
that doesn’t say anything falls in the sad zone and is classified as sad. Right: The classifier has a positive bias, or a
negative threshold. This means that the alien that doesn’t say anything falls in the happy zone and is classified
as happy.

Can we think of sentiment analysis datasets in which the bias is positive or negative? What about
the following two examples:

Example 1 (positive bias): a dataset of online reviews of a product

Imagine a dataset in which we record all the reviews of a particular product on Amazon. Some
of them are positive, and some of them are negative, according to the number of stars they receive.
What do you think the score would be for an empty review? From my experience, bad reviews
tend to contain lots of words, because the customer is upset, and they describe their negative
experience. However, many of the positive reviews are empty—the customer simply gives a good
score, without the need to explain why they enjoyed the product. Therefore, this classifier prob-
ably has a positive bias.

Example 2 (negative bias): a dataset of conversations with friends

Imagine that we record all our conversations with friends and classify them as happy or sad con-
versations. If one day we bump into a friend, and our friend says absolutely nothing, we imagine
that they are mad at us or that they are very upset. Therefore, the empty sentence is classified as
sad. This means that this classifier probably has a negative bias.

	 How do we determine whether a classifier is good or bad? The error function� 121

How do we determine whether a classifier
is good or bad? The error function
Now that we have defined what a perceptron classifier is, our next goal is to understand how to
train it—in other words, how do we find the perceptron classifier that best fits our data? But
before learning how to train perceptrons, we need to learn an important concept: how to evalu-
ate them. More specifically, in this section we learn a useful error function that will tell us
whether a perceptron classifier fits our data well. In the same way that the absolute and square
errors worked for linear regression in chapter 3, this new error function will be large for classifi-
ers that don’t fit the data well and small for those that fit the data well.

How to compare classifiers? The error function
In this section, we learn how to build an effective error function that helps us determine how
good a particular perceptron classifier is. First, let’s test our intuition. Figure 5.12 shows two
different perceptron classifiers on the same dataset. The classifiers are represented as a line with
two well-defined sides, happy and sad. Clearly, the one on the left is a bad classifier, and the one
on the right is good. Can we come up with a measure of how good they are? In other words, can
we assign a number to each one of them, in a way that the one on the left is assigned a high num-
ber and the one on the right a low number?

HappySad
Happy

Sad

Bad classifier Good classifier

Figure 5.12  Left: a bad classifier, which doesn’t really split the points well. Right: a good classifier. Can we think
of an error function that assigns a high number to the bad classifier and a low number to the good one?

Next, we see different answers to this question, all with some pros and cons. One of them (spoiler:
the third one) is the one we use to train perceptrons.

Error function 1: Number of errors

The simplest way to evaluate a classifier is by counting the number of mistakes it makes—in
other words, by counting the number of points that it classifies incorrectly.

In this case, the classifier on the left has an error of 8, because it erroneously predicts four
happy points as sad, and four sad points as happy. The good classifier has an error of 3, because

122	 Chapter 5 I Using lines to split our points: The perceptron algorithm

it erroneously predicts one happy point as sad, and two sad points as happy. This is illustrated in
figure 5.13.

HappySad
Happy

Sad

Bad classifier

Error: 8
Good classifier

Error: 3

Figure 5.13  We evaluate the two classifiers by counting the number of points that each one of them
misclassifies. The classifier on the left misclassifies eight points, whereas the classifier on the right misclassifies
three points. Thus, we conclude that the classifier on the right is a better one for our dataset.

This is a good error function, but it’s not a great error function. Why? It tells us when there is an
error, but it doesn’t measure the gravity of the error. For example, if a sentence is sad, and the
classifier gave it a score of 1, the classifier made a mistake. However, if another classifier gave it a
score of 100, this classifier made a much bigger mistake. The way to see this geometrically is in
figure 5.14. In this image, both classifiers misclassified a sad point by predicting that it is happy.
However, the classifier on the left located the line close to the point, which means that the sad
point is not too far from the sad zone. The classifier on the right, in contrast, has located the
point very far from its sad zone.

HappySad

Poorly classified Very poorly classified

HappySad

Figure 5.14  The two classifiers misclassify the point. However, the classifier on the right made a much bigger
mistake than the classifier on the left. The point on the left is not far from the boundary, and thus, it is not very
far from the sad zone. However, the point on the right is very far from the sad zone. Ideally, we would like an
error function that assigns a higher error to the classifier in the right than to the classifier in the left.

	 How do we determine whether a classifier is good or bad? The error function � 123

Why do we care about measuring how bad an error is? Wouldn’t it be enough to count them?
Recall what we did in chapter 3 with the linear regression algorithm. More specifically, recall
the section “Gradient descent,” where we used gradient descent to reduce this error. The way
to reduce an error is by decreasing it in small amounts, until we reach a point where the error
is small. In the linear regression algorithm, we wiggled the line small amounts and picked the
direction in which the error decreased the most. If our error is calculated by counting the
number of misclassified points, then this error will take only integer values. If we wiggle the
line a small amount, the error may not decrease at all, and we don’t know in which direction
to move. The goal of gradient descent is to minimize a function by taking small steps in the
direction in which the function decreases the most. If the function takes only integer values,
this is equivalent to trying to descend from an Aztec staircase. When we are at a f lat step, we
don’t know what step to take, because the function doesn’t decrease in any direction. This is
illustrated in figure 5.15.

?

Figure 5.15  Performing gradient descent to minimize an error function is like descending from a mountain
by taking small steps. However, for us to do that, the error function must not be flat (like the one on the right),
because in a flat error function, taking a small step will not decrease the error. A good error function is like the
one on the left, in which we can easily see the direction we must use to take a step to slightly decrease the error
function.

We need a function that measures the magnitude of an error and that assigns a higher error to
misclassified points that are far from the boundary than to those that are close to it.

Error function 2: Distance

A way to tell the two classifiers apart in figure 5.16 is by considering the perpendicular distance
from the point to the line. Notice that for the classifier on the left, this distance is small, whereas
for the classifier on the right, the distance is large.

This error function is much more effective. What this error function does follows:

•	 Points that are correctly classified produce an error of 0.

•	 Points that are misclassified produce an error equal to the distance from that point to
the line.

124	 Chapter 5 I Using lines to split our points: The perceptron algorithm

HappySad

Small distance:

Small error

Large distance:

Large error

HappySad

Figure 5.16  An effective way to measure how bad a classifier misclassifies a point is by measuring the
perpendicular distance from the point to the line. For the classifier on the left, this distance is small, whereas
for the classifier on the right, the distance is large.

Let’s go back to the two classifiers we had at the beginning of this section. The way we calculate
the total error is by adding the errors corresponding to all the data points, as illustrated in
figure 5.17. This means that we look only at the misclassified points and add the perpendicular
distances from these points to the line. Notice that the bad classifier has a large error, and the
good classifier has a small error.

HappySad
Happy

Sad

Bad classifier

Error:
Good classifier

Error:

Figure 5.17  To calculate the total error of a classifier, we add up all the errors, which are the perpendicular
distances from the misclassified points. The error is large for the classifier on the left and small for the classifier
on the right. Thus, we conclude that the classifier on the right is better.

This is almost the error function we will use. Why don’t we use this one? Because the distance
from a point to a line is a complicated formula. It contains a square root, because we calculate it
using the Pythagorean theorem. Square roots have complicated derivatives, which adds unnec-
essary complexity the moment we apply the gradient descent algorithm. We don’t need to under-
take this complication, because we can instead create an error function that is easier to calculate

How do we determine whether a classifier is good or bad? The error function � 125

yet still manages to capture the essence of an error function: returning an error for points that
are misclassified and varying the magnitude based on how far the misclassified point is from the
boundary.

Error function 3: Score

In this section, we see how to build the standard error function for perceptrons, which we call
the perceptron error function. First, let’s summarize the properties we want in an error function
as follows:

• The error function of a correctly classified point is 0.

• The error function of an incorrectly classified point is a positive number.

– For misclassified points close to the boundary, the error function is small.

– For misclassified points far from the boundary, the error function is large.

• It is given by a simple formula.

Recall that the classifier predicts a label of 1 for points in the positive zone and a label of 0 for
points in the negative zone. Therefore, a misclassified point is either a point with label 0 in the
positive zone, or a point with label 1 in the negative zone.

To build the perceptron error function, we use the score. In particular, we use the following
properties of the score:

Properties of the score:

1. The points in the boundary have a score of 0.

2. The points in the positive zone have positive scores.

3. The points in the negative zone have negative scores.

4. The points close to the boundary have scores of low magnitude (i.e., positive or negative
scores of low absolute value).

5. The points far from the boundary have scores of high magnitude (i.e., positive or negative
scores of high absolute value).

For a misclassified point, the perceptron error wants to assign a value that is proportional to its
distance to the boundary. Therefore, the error for misclassified points that are far from the
boundary must be high, and the error for misclassified points that are close to the boundary
must be low. Looking at properties 4 and 5, we can see that the absolute value of the score is
always high for points far from the boundary and low for points close to the boundary. Thus, we
define the error as the absolute value of the score for misclassified points.

More specifically, consider the classifier that assigns weights of a and b to the words aack and
beep, and has a bias of c. This classifier makes the prediction ŷ = step(ax

aack
 + bx

beep
 + c) to the

sentence with x
aack

 appearances of the word aack and x
beep

 appearances of the word beep. The per-
ceptron error is defined as follows:

126	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Perceptron error for a sentence

•	 If the sentence is correctly classified, the error is 0.

•	 If the sentence is misclassified, the error is |x
aack

 + bx
beep

 + c|.

In the general scenario, where the notation is defined as in the section “What happens if I have
more than two words?,” the following is the definition of the perceptron error:

Perceptron error for a point (general)

•	 If the point is correctly classified, the error is 0.

•	 If the point is misclassified, the error is |w
1
 x

1
 +w

2
 x

2
 + … +w

n
x

n
 + b|.

The mean perceptron error: A way to calculate the error of an entire dataset

To calculate the perceptron error for an entire dataset, we take the average of all the errors cor-
responding to all the points. We can also take the sum if we choose, although in this chapter we
choose the average and call it the mean perceptron error.

To illustrate the mean perceptron error, let’s look at an example.

Example

Consider the dataset made of four sentences, two labeled happy and two labeled sad, illustrated
in table 5.3.

Table 5.3  The new dataset of aliens. Again, we’ve recorded each sentence, the number of
appearances of each word in that sentence, and the mood of the alien.

Sentence Aack Beep Label (mood)

Aack 1 0 Sad

Beep 0 1 Happy

Aack beep beep beep 1 3 Happy

Aack beep beep aack aack 3 2 Sad

We’ll compare the following two classifiers on this dataset:

Classifier 1

Weights:

•	 Aack: a = 1

•	 Beep: b = 2

	 How do we determine whether a classifier is good or bad? The error function � 127

Bias: c = –4

Score of a sentence: 1x
aack

 + 2x
beep

 – 4

Prediction: ŷ = step(1x
aack

+ 2x
beep

 – 4)

Classifier 2

Weights:

•	 Aack: a = –1

•	 Beep: b = 1

Bias: c = 0

Score of a sentence: –x
aack

+ x
beep

Prediction: ŷ = step(–x
aack

+ x
beep

)

The points and the classifiers can be seen in figure 5.18. At first glance, which one looks like a
better classifier? It appears classifier 2 is better, because it classifies every point correctly, whereas
classifier 1 makes two mistakes. Now let’s calculate the errors and make sure that classifier 1 has
a higher error than classifier 2.

1

2

3

1 2 3 4

Aack

B
e

e
p

0

#aack + 2#beep – 4 = 0

Aack: 1
Beep: 3

Aack: 0
Beep: 1

Aack: 3
Beep: 2

Aack: 1
Beep: 0

1

2

3

Aack

B
e

e
p

0

–#aack + #beep = 0

Aack: 1
Beep: 3

Aack: 0
Beep: 1

Aack: 3
Beep: 2

Aack: 1
Beep: 0

Figure 5.18  On the left we have classifier 1, and on the right we have classifier 2.

The predictions for both classifiers are calculated in table 5.4.

128	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Table 5.4  Our dataset of four sentences with their labels. For each of the two classifiers, we
have the score and the prediction.

Sentence
(xaack, xbeep)

Label
y

Classifier 1
score

1xaack +
2xbeep – 4

Classifier 1
prediction

step(1xaack +
2xbeep – 4)

Classifier 1
error

Classifier 2
score

–xaack +
2xbeep

Classifier 2
prediction
step(–xaack

+ 2xbeep)

Classi-
fier 2
error

(1,0) Sad (0) –3 0 (correct) 0 –1 0 (correct) 0

(0,1) Happy
(1)

-2 0 (incorrect) 2 1 1 (correct) 0

(1,3) Happy
(1)

3 1 (correct) 3 2 1 (correct) 0

(3,2) Sad (0) 3 1 (incorrect) 0 –1 0 (correct) 0

Mean
perceptron

error

1.25 0

Now on to calculate the errors. Note that classifier 1 misclassified only sentences 2 and 4. Sentence
2 is happy, but it is misclassified as sad, and sentence 4 is sad, but it is misclassified as happy. The
error of sentence 2 is the absolute value of the score, or |–2| = 2. The error of sentence 4 is the
absolute value of the score, or |3| = 3. The other two sentences have an error of 0, because they are
correctly classified. Thus, the mean perceptron error of classifier 1 is

1

4
(0 + 2 + 0 + 3) = 1.25.

Classifier 2 makes no errors—it correctly classifies all the points. Therefore, the mean percep-
tron error of classifier 2 is 0. We then conclude that classifier 2 is better than classifier 1. The
summary of these calculations is shown in table 5.4 and figure 5.19.

1

2

3

1 2 3 4

Aack

B
e

e
p

0

#aack + 2#beep – 4 = 0

Score: 3
Error = 0

Score: –2
Error = 2

Score: 3
Error = 3

Score: –3
Error = 0

1

2

3

Aack

B
e

e
p

0

–#aack + #beep = 0

Score: 2
Error = 0

Score: 1
Error = 0

Score: –1
Error = 0

Score: –1
Error = 0

Mean perceptron error = Mean perceptron error =

Figure 5.19  Classifier 1 has an error of 1.25, whereas classifier 2 has an error of 0. Thus, we conclude that
classifier 2 is better than classifier 1.

	 How to find a good classifier? The perceptron algorithm� 129

Now that we know how to compare classifiers, let’s move on to finding the best one of them, or
at least a pretty good one.

How to find a good classifier? The perceptron algorithm
To build a good perceptron classifier, we’ll follow a similar approach as the one we followed with
linear regression in chapter 3. The process is called the perceptron algorithm, and it consists of
starting with a random perceptron classifier and slowly improving it until we have a good one.
The main steps of the perceptron algorithm follow:

1.	 Start with a random perceptron classifier.

2.	 Slightly improve the classifier. (Repeat many times.)

3.	 Measure the perceptron error to decide when to stop running the loop.

We start by developing the step inside the loop, a technique used to slightly improve a perceptron
classifier called the perceptron trick. It is similar to the square and absolute tricks we learned in
the sections “The square trick” and “The absolute trick” in chapter 3.

The perceptron trick: A way to slightly improve the perceptron
The perceptron trick is a tiny step that helps us go from a perceptron classifier to a slightly better
perceptron classifier. However, we’ll start by describing a slightly less ambitious step. Just as we
did in chapter 3, we’ll first focus on one point and try to improve the classifier for that one point.

There are two ways to see the perceptron step, although both are equivalent. The first way is
the geometric way, where we think of the classifier as a line.

Pseudocode for the perceptron trick (geometric)

•	 Case 1: If the point is correctly classified, leave the line as it is.

•	 Case 2: If the point is incorrectly classified, move the line a little closer to the point.

Why does this work? Let’s think about it. If the point is misclassified, it means it is on the wrong
side of the line. Moving the line closer to it may not put it on the right side, but at least it gets it
closer to the line and, thus, closer to the correct side of the line. We repeat this process many
times, so it is imaginable that one day we’ll be able to move the line past the point, thus correctly
classifying it. This process is illustrated in figure 5.20.

We also have an algebraic way to see the perceptron trick.

130	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Classifier

Slightly better
classifier

Misclassified
point

Happy
Sad

Classifier stays
the same.

Correctly
classified point

Case 1 Case 2

Happy
Sad

HappySad

Figure 5.20  Case 1 (left): A point that is correctly classified tells the line to stay where it is. Case 2 (right): A point
that is misclassified tells the line to move closer toward it.

Pseudocode for the perceptron trick (algebraic)

•	 Case 1: If the point is correctly classified, leave the classifier as it is.

•	 Case 2: If the point is incorrectly classified, that means it produces a positive error.
Adjust the weights and the bias a small amount so that this error slightly decreases.

The geometric way is an easier way to visualize this trick, but the algebraic way is an easier way
to develop it, so we’ll look at it the algebraic way. First, let’s use our intuition. Imagine that we
have a classifier for the entire English language. We try this classifier on the sentence “I am sad,”
and it predicts that the sentence is happy. This is clearly wrong. Where could we have gone
wrong? If the prediction is that the sentence is happy, then the sentence must have received a
positive score. This sentence shouldn’t receive a positive score—it should receive a negative score
to be classified as sad. The score is calculated as the sum of the scores of its words I, am, and sad,
plus the bias. We need to decrease this score, to make the sentence slightly sadder. It is OK if we
decrease it only a little bit, and the score is still positive. Our hope is that running this process
many times will one day turn the score into negative and correctly classify our sentence. The way
to decrease the score is by decreasing all its parts, namely, the weights of the words I, am, and sad
and the bias. By how much should we decrease them? We decrease them by an amount equal to
the learning rate that we learned in the section “The square trick” in chapter 3.

Similarly, if our classifier misclassifies the sentence “I am happy” as a sad sentence, then our
procedure is to slightly increase the weights of the words I, am, and happy and the bias by an
amount equal to the learning rate.

Let’s illustrate this with a numerical example. In this example, we use a learning rate of h = 0.01.
Imagine that we have the same classifier that we had in the previous section, namely, the one with
the following weights and bias. We’ll call it the bad classifier, because our goal is to improve it.

Bad classifier

Weights:

•	 Aack: a = 1

•	 Beep: b = 2

	 How to find a good classifier? The perceptron algorithm� 131

Bias: c = –4

Prediction: ŷ = step(x
aack

 + 2x
beep

 – 4)

The following sentence is misclassified by the model, and we’ll use it to improve the weights:

Sentence 1: “Beep aack aack beep beep beep beep.”

Label: Sad (0)

For this sentence, the number of appearances of aack is x
aack

 = 2, and the number of appearances
of beep is x

beep
 = 5. Thus, the score is 1 · x

aack
 + 2 · x

beep
 – 4 = 1 · 2 + 2 · 5 – 4 = 8, and the prediction

is ŷ = step(8) = 1.
The sentence should have had a negative score, to be classified as sad. However, the classifier

gave it a score of 8, which is positive. We need to decrease this score. One way to decrease it is to
subtract the learning rate to the weight of aack to the weight of beep and to the bias, thus obtain-
ing new weights, which we call a ¢ = 0.99, b ¢ = 1.99, and a new bias c ¢ = 4.01. However, think about
this: the word beep appeared many more times than the word aack. In some way, beep is more
crucial to the score of the sentence than aack. We should probably decrease the weight of beep
more than the score of aack. Let’s decrease the weight of each word by the learning rate times the
number of times the word appears in the sentence. In other words:

•	 The word aack appears twice, so we’ll reduce its weight by two times the learning rate, or
0.02. We obtain a new weight a ¢ = 1 – 2 · 0.01 = 0.98.

•	 The word beep appears five times, so we’ll reduce its weight by five times the learning
rate, or 0.05. We obtain a new weight b ¢ = 2 – 5 · 0.01 = 1.95.

•	 The bias adds to the score only once, so we reduce the bias by the learning rate, or 0.01.
We obtain a new bias c ¢ = –4 – 0.01 = –4.01.

aside  Instead of subtracting the learning rate from each weight, we subtracted the learning
rate times the number of appearances of the word in the sentence. The true reason for this is
calculus. In other words, when we develop the gradient descent method, the derivative of the
error function forces us to do this. This process is detailed in appendix B, section “Using gra-
dient descent to train classification models.”

The new improved classifier follows:

Improved classifier 1

Weights:

•	 Aack: a ¢ = 0.98

•	 Beep: b ¢ = 1.95

Bias: c ¢ = –4.01

Prediction: ŷ = step(0.98x
aack

+ 1.95x
beep

 – 4.01)

132	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Let’s verify the errors of both classifiers. Recall that the error is the absolute value of the score.
Thus, the bad classifier produces an error of |1 · x

aack
+ 2 · x

beep
 – 4| = |1 · 2 + 2 · 5 – 4| = 8. The

improved classifier produces an error of |0.98 · x
aack

 + 1.95 · x
beep

 – 4.01| = |0.98 · 2 + 1.95 · 5 – 4.01|
= 7.7. That is a smaller error, so we have indeed improved the classifier for that point!

The case we just developed consists of a misclassified point with a negative label. What hap-
pens if the misclassified point has a positive label? The procedure is the same, except instead of
subtracting an amount from the weights, we add it. Let’s go back to the bad classifier and con-
sider the following sentence:

Sentence 2: “Aack aack.”

Label: Happy

The prediction for this sentence is ŷ = step(x
aack

+ 2x
beep

 – 4) = step(2 + 2 · 0 – 4) = step(–2) = 0.
Because the prediction is sad, the sentence is misclassified. The score of this sentence is –2, and
to classify this sentence as happy, we need the classifier to give it a positive score. The percep-
tron trick will increase this score of –2 by increasing the weights of the words and the bias as
follows:

•	 The word aack appears twice, so we’ll increase its weight by two times the learning rate,
or 0.02. We obtain a new weight a ¢ = 1 + 2 · 0.01 = 1.02.

•	 The word beep appears zero times, so we won’t increase its weight, because this word is
irrelevant to the sentence.

•	 The bias adds to the score only once, so we increase the bias by the learning rate, or 0.01.
We obtain a new bias c ¢ = –4 + 0.01 = –3.99.

Thus, our new improved classifier follows:

Improved classifier 2

Weights:

•	 Aack: a ¢ = 1.02

•	 Beep: b ¢ = 2

Bias: c ¢ = –3.99

Prediction: ŷ = step(1.02x
aack

+ 2x
beep

 – 3.99)

Now let’s verify the errors. Because the bad classifier gave the sentence a score of –2, then the
error is |–2| = 2. The second classifier gave the sentence a score of 1.02x

aack
+ 2x

beep
 – 3.99 = 1.02 ·

2 + 2 · 0 – 3.99 = –1.95, and an error of 1.95. Thus, the improved classifier has a smaller error on
that point than the bad classifier, which is exactly what we were expecting.

Let’s summarize these two cases and obtain the pseudocode for the perceptron trick.

	 How to find a good classifier? The perceptron algorithm� 133

Pseudocode for the perceptron trick

Inputs:

•	 A perceptron with weights a, b, and bias c

•	 A point with coordinates (x
1
, x

2
) and label y

•	 A small positive value h (the learning rate)

Output:

•	 A perceptron with new weights a ¢, b ¢, and bias c ¢

Procedure:

•	 The prediction the perceptron makes at the point is ŷ = step(ax
1
 + bx

2
 + c).

•	 Case 1: If ŷ = y:

	– Return the original perceptron with weights a, b, and bias c .

•	 Case 2: If ŷ = 1 and y = 0:

	– Return the perceptron with the following weights and bias:

	– a ¢ = a – hx
1

	– b ¢ = b – hx
2

	– c ¢ = c – hx
1
.

•	 Case 3: If ŷ = 0 and y = 1:

	– Return the perceptron with the following weights and bias:

	– a ¢ = a + hx
1

	– b ¢ = b – hx
2

	– c ¢ = c + hx
1
.

If the perceptron correctly classifies the point, the output perceptron is the same as the input,
and both of them produce an error of 0. If the perceptron misclassifies the point, the output
perceptron produces a smaller error than the input perceptron.

The following is a slick trick to condense the pseudocode. Note that the quantity y – ŷ is 0, –1,
and +1 for the three cases in the perceptron trick. Thus, we can summarize it as follows:

Pseudocode for the perceptron trick

Inputs:

•	 A perceptron with weights a, b, and bias c

•	 A point with coordinates (x
1
, x

2
) and label y

•	 A small value h (the learning rate)

134	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Output:

•	 A perceptron with new weights a ¢, b ¢, and bias c ¢

Procedure:

•	 The prediction the perceptron makes at the point is ŷ = step(ax
1
 + bx

2
 + c).

•	 Return the perceptron with the following weights and bias:

	– a ¢ = a + h(y – ŷ)x
1

	– b ¢ = b + h(y – ŷ)x
2

	– c ¢ = c + h(y – ŷ)

Repeating the perceptron trick many times: The perceptron algorithm
In this section, we learn the perceptron algorithm, which is used to train a perceptron classifier
on a dataset. Recall that the perceptron trick allows us to slightly improve a perceptron to make
a better prediction on one point. The perceptron algorithm consists of starting with a random
classifier and continuously improving it, using the perceptron trick many times.

As we’ve seen in this chapter, we can study this problem in two ways: geometrically and algebra-
ically. Geometrically, the dataset is given by points in the plane colored with two colors, and the
classifier is a line that tries to split these points. Figure 5.21 contains a dataset of happy and sad
sentences just like the ones we saw at the beginning of this chapter. The first step of the algorithm
is to draw a random line. It’s clear that the line in figure 5.21 does not represent a great perceptron
classifier, because it doesn’t do a good job of splitting the happy and the sad sentences.

Come closer!

Come closer!

Come closer!

Happy

Sad

Stay there!

Stay there!

Stay there!

Stay there!

Stay there!

Figure 5.21  Each point tells the classifier what to do to make life better for itself. The points that are correctly
classified tell the line to stay still. The points that are misclassified tell the line to move slightly toward them.

	 How to find a good classifier? The perceptron algorithm� 135

The next step in the perceptron algorithm consists of picking one point at random, such as the
one in figure 5.22. If the point is correctly classified, the line is left alone. If it is misclassified,
then the line gets moved slightly closer to the point, thus making the line a better fit for that
point. It may become a worse fit for other points, but that doesn’t matter for now.

Come closer!

Perceptron
trick

Thanks!

Happy

Sad

Happy

Sad

Figure 5.22  If we apply the perceptron trick to a classifier and a misclassified point, the classifier moves slightly
toward the point.

It is imaginable that if we were to repeat this process many times, eventually we will get to a good
solution. This procedure doesn’t always get us to the best solution. But in practice, this method
often reaches to a good solution as shown in figure 5.23. We call this the perceptron algorithm.

Perceptron
algorithm

Come closer!

Come closer!Come closer!

Happy

Sad

HappySad

Stay there!

Stay there!

Stay there!

Stay there!
Stay there!

Figure 5.23  If we apply the perceptron trick many times, each time picking a random point, we can imagine
that we’ll obtain a classifier that classifies most points correctly.

The number of times we run the algorithm is the number of epochs. Therefore, this algorithm
has two hyperparameters: the number of epochs, and the learning rate. The pseudocode of the
perceptron algorithm follows:

Pseudocode for the perceptron algorithm

Inputs:

•	 A dataset of points, labeled 1 and 0

•	 A number of epochs, n

•	 A learning rate h

Output:

•	 A perceptron classifier consisting of a set of weights and a bias that fits the dataset

136	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Procedure:

•	 Start with random values for the weights and bias of the perceptron classifier.

•	 Repeat many times:

	– Pick a random data point.

	– Update the weights and the bias using the perceptron trick.

Return: The perceptron classifier with the updated weights and bias.

How long should we run the loop? In other words, how many epochs should we use? Several
criteria to help us make that decision follow:

•	 Run the loop a fixed number of times, which could be based on our computing power, or
the amount of time we have.

•	 Run the loop until the error is lower than a certain threshold we set beforehand.

•	 Run the loop until the error doesn’t change significantly for a certain number of epochs.

Normally, if we have the computing power, it’s OK to run it many more times than needed,
because once we have a well-fitted perceptron classifier, it tends to not change very much. In the
“Coding the perceptron algorithm” section, we code the perceptron algorithm and analyze it by
measuring the error in each step, so we’ll get a better idea of when to stop running it.

Note that for some cases, such as the one shown in figure 5.24, it is impossible to find a line to
separate the two classes in the dataset. That is OK: the goal is to find a line that separates the
dataset with as few errors as possible (like the one in the figure), and the perceptron algorithm is
good at this.

HappySad

Figure 5.24  A dataset with two classes that are impossible to separate with a line. The perceptron algorithm is
then trained to find a line that separates them as best as possible.

	 Coding the perceptron algorithm� 137

Gradient descent
You may notice that the process for training this model looks very familiar. In fact, it is similar
to what we did in chapter 3 with linear regression. Recall that the purpose of linear regression is
to fit a line as close as possible to a set of points. In chapter 3, we trained our linear regression
model by starting with a random line and taking small steps to get closer and closer to the points.
We then used the analogy of descending from a mountain (Mount Errorest) by taking small
steps toward the bottom. The height at each point in the mountain is the mean perceptron error
function, which we defined as the absolute error, or the square error. Therefore, descending from
the mountain is equivalent to minimizing the error, which is equivalent to finding the best line
fit. We called this process gradient descent, because the gradient is precisely the vector that points
in the direction of largest growth (so its negative points in the direction of largest decrease), and
taking a step in this direction will get us to descend the most.

In this chapter, the same thing happens. Our problem is a little different because we don’t
want to fit a line as close as possible to a set of points. Instead, we want to draw a line that sepa-
rates two sets of points in the best possible way. The perceptron algorithm is the process that
starts with a random line, and it slowly moves it step by step to build a better separator. The
analogy of descending from a mountain also works here. The only difference is that in this
mountain, the height at each point is the mean perceptron error that we learned in the section
“How to compare classifiers? The error function.”

Stochastic and batch gradient descent
The way we developed the perceptron algorithm in this section is by repeatedly taking one point
at a time and adjusting the perceptron (line) to be a better fit for that point. This is called an
epoch. However, just as we did with linear regression in section “Do we train using one point at
a time or many?” in chapter 3, the better approach is to take a batch of points at a time and adjust
the perceptron to be a better fit for those points in one step. The extreme case is to take all the
points in the set at a time and adjust the perceptron to fit all of them better in one step. In section
“Do we train using one point at a time or many?” in chapter 3, we call these approaches stochas-
tic, mini-batch, and batch gradient descent. In this section, we use the formal perceptron algo-
rithm using mini-batch gradient descent. The mathematical details appear in appendix B, section
“Using gradient descent to train classification models,” where the perceptron algorithm is described
in full generality using mini-batch gradient descent.

Coding the perceptron algorithm
Now that we have developed the perceptron algorithm for our sentiment analysis application, in
this section we write the code for it. First we’ll write the code from scratch to fit our original dataset,
and then we’ll use Turi Create. In real life, we always use a package and have little need to code our
own algorithms. However, it’s good to code some of the algorithms at least once—think of it as
doing long division. Although we usually don’t do long division without using a calculator, it’s good
we had to in high school, because now when we do it using a calculator, we know what’s happening
in the background. The code for this section follows, and the dataset we use is shown in table 5.5:

138	 Chapter 5 I Using lines to split our points: The perceptron algorithm

•	 Notebook: Coding_perceptron_algorithm.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_5_Perceptron_
Algorithm/Coding_perceptron_algorithm.ipynb

Table 5.5  A dataset of aliens, the times they said each of the words, and their mood.

Aack Beep Happy/Sad

1 0 0

0 2 0

1 1 0

1 2 0

1 3 1

2 2 1

2 3 1

3 2 1

Let’s begin by defining our dataset as a NumPy array. The features correspond to two numbers
corresponding to the appearances of aack and beep. The labels are 1 for the happy sentences and
0 for the sad ones.

import numpy as np
features = np.array([[1,0],[0,2],[1,1],[1,2],[1,3],[2,2],[2,3],[3,2]])
labels = np.array([0,0,0,0,1,1,1,1])

This gives us the plot in figure 5.25. In this figure, the happy sentences are triangles, and the sad
ones are squares.

Figure 5.25  The plot of our dataset. Triangles are happy aliens, and squares are sad aliens.

https://github.com/luisguiserrano/manning/blob/master/Chapter_5_Perceptron_Algorithm/Coding_perceptron_algorithm.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_5_Perceptron_Algorithm/Coding_perceptron_algorithm.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_5_Perceptron_Algorithm/Coding_perceptron_algorithm.ipynb

	 Coding the perceptron algorithm� 139

Coding the perceptron trick
In this section, we code the perceptron trick. We’ll code it using stochastic gradient descent (one
point at a time), but we could also code it using either mini-batch or batch gradient descent. We
start by coding the score function and the prediction. Both functions receive the same input,
which is the weights of the model, the bias, and the features of one data point. The score function
returns the score that the model gives to that data point, and the prediction function returns a 1
if the score is greater than or equal to zero and a 0 if the score is less than zero. For this function
we use the dot product defined in the section “Plotting the error function and knowing when to
stop running the algorithm” in chapter 3.

def score(weights, bias, features):
 return np.dot(features, weights) + bias

Calculates the dot product between
the weights and the features, adds
the bias, and applies the step function

To write the prediction function, we first write the step function. The prediction is the step func-
tion of the score.

def step(x):
 if x >= 0:
 return 1
 else:
 return 0

def prediction(weights, bias, features):
 return step(score(weights, bias, features))

Looks at the score, and if it
is positive or zero, returns 1;
if it is negative, returns 0

Next, we code the error function for one point. Recall that the error is zero if the point is cor-
rectly classified and the absolute value of the score if the point is misclassified. This function
takes as input the weights and bias of the model and the features and label of the data point.

def error(weights, bias, features, label):
 pred = prediction(weights, bias, features)
 if pred == label:		

If the prediction is equal to the label,
then the point is well classified,
which means the error is zero. return 0

 else:	
 return np.abs(score(weights, bias, features))

 If the prediction is different from the label, then the point
is misclassified, which means the error is equal to the
absolute value of the score.

We now write a function for the mean perceptron error. This function calculates the average of
the errors of all the points in our dataset.

def mean_perceptron_error(weights, bias, features, labels):
 total_error = 0
 for i in range(len(features)):

Loops through our data, and for
each point, adds the error at that
point, then returns this error

140	 Chapter 5 I Using lines to split our points: The perceptron algorithm

 total_error += error(weights, bias, features[i], labels[i])
 return total_error/len(features)	 The sum of errors is divided by the

number of points to get the mean
perceptron error.

Now that we have the error function, we can go ahead and code the perceptron trick. We’ll code
the condensed version of the algorithm found at the end of the section “The perceptron trick.”
However, in the notebook, you can find it coded in both ways, the first one using an if statement
that checks whether the point is well classified.

def perceptron_trick(weights, bias, features, label, learning_rate = 0.01):
 pred = prediction(weights, bias, features)
 for i in range(len(weights)):
 weights[i] += (label-pred)*features[i]*learning_rate	
 bias += (label-pred)*learning_rate
 return weights, bias Updates the weights

and biases using the
perceptron trick

Coding the perceptron algorithm
Now that we have the perceptron trick, we can code the perceptron algorithm. Recall that the
perceptron algorithm consists of starting with a random perceptron classifier and repeating the
perceptron trick many times (as many as the number of epochs). To track the performance of the
algorithm, we’ll also keep track of the mean perceptron error at each epoch. As inputs, we have
the data (features and labels), the learning rate, which we default to 0.01, and the number of
epochs, which we default to 200. The code for the perceptron algorithm follows:

def perceptron_algorithm(features, labels, learning_rate = 0.01,
epochs = 200):

 weights = [1.0 for i in range(len(features[0]))]
 bias = 0.0
 errors = []		

An array to store the errors

 for epoch in range(epochs):	
 error = mean_perceptron_error(weights, bias, features, labels)
 errors.append(error)
 i = random.randint(0, len(features)-1)	

Picks a random point
in our dataset

 weights, bias = perceptron_trick(weights, bias, features[i], labels[i])
 return weights, bias, errors

Applies the perceptron algorithm to
update the weights and the bias of
our model based on that point

Initializes the weights to 1 and the bias to
0. Feel free to initialize them to small

random numbers if you prefer.

Repeats the process as
many times as the
number of epochs

Calculates the
mean perceptron

error and stores it

	 Coding the perceptron algorithm� 141

Now let’s run the algorithm on our dataset!

perceptron_algorithm(features, labels)
Output: ([0.6299999999999997, 0.17999999999999938], -1.0400000000000007)

The output shows that the weights and bias we obtained are the following:

•	 Weight of aack: 0.63

•	 Weight of beep: 0.18

•	 Bias: –1.04

We could have a different answer, because of the randomness in our choice of points inside the
algorithm. For the code in the repository to always return the same answer, the random seed is
set to zero.

Figure 5.26 shows two plots: on the left is the line fit, and on the right is the error function.
The line corresponding to the resulting perceptron is the thick line, which classifies every point
correctly. The thinner lines are the lines corresponding to the perceptrons obtained after each of
the 200 epochs. Notice how at each epoch, the line becomes a better fit for the points. The error
decreases (mostly) as we increase the number of epochs, until it reaches zero at around epoch
140, meaning that every point is correctly classified.

Classifier Error

epochs

e
rr

o
r

Figure 5.26  Left: The plot of our resulting classifier. Notice that it classifies each point correctly. Right: The error
plot. Notice that the more epochs we run the perceptron algorithm for, the lower the error gets.

That is the code for the perceptron algorithm! As I mentioned before, in practice, we don’t nor-
mally code algorithms by hand, but we use a package, such as Turi Create or Scikit-Learn. This is
what we cover in the next section.

Coding the perceptron algorithm using Turi Create
In this section, we learn to code the perceptron algorithm in Turi Create. The code is in the same
notebook as the previous exercise. Our first task is to import Turi Create and create an SFrame
with our data from a dictionary as follows:

142	 Chapter 5 I Using lines to split our points: The perceptron algorithm

import turicreate as tc

datadict = {'aack': features[:,0], 'beep':features[:,1], 'prediction': labels}
data = tc.SFrame(datadict)

Next, we create and train our perceptron classifier, using the logistic_classifier object and
the create method, as shown in the next code. The inputs are the dataset and the name of the
column containing the labels (target).

perceptron = tc.logistic_classifier.create(data, target='prediction')

Output:

+-----------+----------+--------------+-------------------+
| Iteration | Passes | Elapsed Time | Training Accuracy |
+-----------+----------+--------------+-------------------+
1	2	1.003120	1.000000
2	3	1.004235	1.000000
3	4	1.004840	1.000000
4	5	1.005574	1.000000
+-----------+----------+--------------+-------------------+
SUCCESS: Optimal solution found.

Notice that the perceptron algorithm ran for four epochs, and in the last one (in fact, in all of
them), it had a training accuracy of 1. This means every point in the dataset was correctly
classified.

Finally, we can look at the weights and bias of the model, using the following command:

perceptron.coefficients

The output of this function shows the following weights and bias for the resulting perceptron:

•	 Weight of aack: 2.70

•	 Weight of beep: 2.46

•	 Bias: –8.96

These are different results from what we obtained by hand, but both perceptrons work well in the
dataset.

Applications of the perceptron algorithm
The perceptron algorithm has many applications in real life. Virtually every time we need to
answer a question with yes or no, where the answer is predicted from previous data, the percep-
tron algorithm can help us. Here are some examples of real-life applications of the perceptron
algorithm.

	 Applications of the perceptron algorithm� 143

Spam email filters
In a similar way as we predicted whether a sentence is happy or sad based on the words in the
sentence, we can predict whether an email is spam or not spam based on the words in the email.
We can also use other features, such as the following:

•	 Length of the email

•	 Size of attachments

•	 Number of senders

•	 Whether any of our contacts is a sender

Currently, the perceptron algorithm (and its more advanced counterparts, logistic regression
and neural networks) and other classification models are used as a part of spam classification
pipelines by most of the biggest email providers, with great results.

We can also categorize emails using classification algorithms like the perceptron algorithm.
Classifying email into personal, subscriptions, and promotions is the exact same problem. Even
coming up with potential responses to an email is also a classification problem, except now the
labels that we use are responses to emails.

Recommendation Systems
In many recommendation systems, recommending a video, movie, song, or product to a user
boils down to a yes or no answer. In these cases, the question can be any of the following:

•	 Will the user click on the video/movie we’re recommending?

•	 Will the user watch the entire video/movie we’re recommending?

•	 Will the user listen to the song we’re recommending?

•	 Will the user buy the product we’re recommending?

The features can be anything, from demographic (age, gender, location of the user), to behavioral
(what videos did the user watch, what songs did they hear, what products did they buy?). You can
imagine that the user vector would be a long one! For this, large computing power and very clever
implementations of the algorithms are needed.

Companies such as Netflix, YouTube, and Amazon, among many others, use the perceptron
algorithm or similar, more advanced classification models in their recommendation systems.

Health care
Many medical models also use classification algorithms such as the perceptron algorithm to
answer questions such as the following:

•	 Does the patient suffer from a particular illness?

•	 Will a certain treatment work for a patient?

The features for these models will normally be the symptoms the patient is suffering and their
medical history. For these types of algorithms, one needs very high levels of performance.

144	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Recommending the wrong treatment for a patient is much more serious than recommending a
video that a user won’t watch. For this type of analysis, refer to chapter 7, where we talk about
accuracy and other ways to evaluate classification models.

Computer vision
Classification algorithms such as the perceptron algorithm are widely used in computer vision,
more specifically, in image recognition. Imagine that we have a picture, and we want to teach the
computer to tell whether the picture contains a dog. This is a classification model in which the
features are the pixels of the image.

The perceptron algorithm has decent performance in curated image datasets such as MNIST,
which is a dataset of handwritten digits. However, for more complicated images, it doesn’t do
very well. For these, one uses models that consist of a combination of many perceptrons. These
models are aptly called multilayer perceptrons, or neural networks, and we learn about them in
detail in chapter 10.

Summary
•	 Classification is an important part of machine learning. It is similar to regression in that

it consists of training an algorithm with labeled data and using it to make predictions on
future (unlabeled) data. The difference from regression is that in classification, the
predictions are categories, such as yes/no, spam/ham, and so on.

•	 Perceptron classifiers work by assigning a weight to each of the features and a bias. The
score of a data point is calculated as the sum of products of the weights and features, plus
the bias. If the score is greater than or equal to zero, the classifier predicts a yes.
Otherwise, it predicts a no.

•	 For sentiment analysis, a perceptron consists of a score for each of the words in the
dictionary, together with a bias. Happy words normally end up with a positive score, and
sad words with a negative score. Neutral words such as the likely end up with a score close
to zero.

•	 The bias helps us decide if the empty sentence is happy or sad. If the bias is positive, then
the empty sentence is happy, and if it is negative, then the empty sentence is sad.

•	 Graphically, we can see a perceptron as a line trying to separate two classes of points,
which can be seen as points of two different colors. In higher dimensions, a perceptron is
a hyperplane separating points.

•	 The perceptron algorithm works by starting with a random line and then slowly moving
it to separate the points well. In every iteration, it picks a random point. If the point is
correctly classified, the line doesn’t move. If it is misclassified, then the line moves a little
bit closer to the point to pass over it and classify it correctly.

	 Exercises� 145

•	 The perceptron algorithm has numerous applications, including spam email detection,
recommendation systems, e-commerce, and health care.

Exercises
Exercise 5.1

The following is a dataset of patients who have tested positive or negative for COVID-19. Their
symptoms are cough (C), fever (F), difficulty breathing (B), and tiredness (T).

Cough (C) Fever (F) Difficulty
breathing (B)

Tiredness (T) Diagnosis (D)

Patient 1 X X X Sick

Patient 2 X X X Sick

Patient 3 X X X Sick

Patient 4 X X X Sick

Patient 5 X X Healthy

Patient 6 X X Healthy

Patient 7 X Healthy

Patient 8 X Healthy

Build a perceptron model that classifies this dataset.

hint  You can use the perceptron algorithm, but you may be able to eyeball a good percep-
tron model that works.

Exercise 5.2

Consider the perceptron model that assigns to the point (x
1
, x

2
) the prediction ŷ = step(2x

1
 + 3x

2
 – 4).

This model has as a boundary line with equation 2x
1
 + 3x

2
 – 4 = 0. We have the point p = (1, 1)

with label 0.

a.	 Verify that the point p is misclassified by the model.

b.	 Calculate the perceptron error that the model produces at the point p.

c.	 Use the perceptron trick to obtain a new model that still misclassifies p but produces a
smaller error. You can use h = 0.01 as the learning rate.

d.	 Find the prediction given by the new model at the point p, and verify that the perceptron
error obtained is smaller than the original.

146	 Chapter 5 I Using lines to split our points: The perceptron algorithm

Exercise 5.3

Perceptrons are particularly useful for building logical gates such as AND and OR.

a.	 Build a perceptron that models the AND gate. In other words, build a perceptron to fit
the following dataset (where x

1
, x

2
 are the features and y is the label):

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

b.	 Similarly, build a perceptron that models the OR gate, given by the following dataset:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

c.	 Show that there is no perceptron that models the XOR gate, given by the following
dataset:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

147

In this chapter

• the difference between hard assignments and soft assignments in

classification models

• the sigmoid function, a continuous activation function

• discrete perceptrons vs. continuous perceptrons, also called logistic

classifiers

• the logistic regression algorithm for classifying data

• coding the logistic regression algorithm in Python

• using the logistic classifier in Turi Create to analyze the sentiment

of movie reviews

• using the softmax function to build classifiers for more than

two classes

A continuous approach to splitting points:
Logistic classifiers 6

148	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

the probability that i

win the lottery is 90%.

i think you’re being

a little optimistic.

you think?

yes.

ok. you’re right. the

probability that i win

the lottery is 89%.

sigh . . .we’ll get there.

In the previous chapter, we built a classifier that determined if a sentence was happy or sad. But
as we can imagine, some sentences are happier than others. For example, the sentence “I’m good”
and the sentence “Today was the most wonderful day in my life!” are both happy, yet the second
is much happier than the first. Wouldn’t it be nice to have a classifier that not only predicts if
sentences are happy or sad but that gives a rating for how happy sentences are—say, a classifier
that tells us that the first sentence is 60% happy and the second one is 95% happy? In this chapter,
we define the logistic classifier, which does precisely that. This classifier assigns a score from 0 to
1 to each sentence, in a way that the happier a sentence is, the higher the score it receives.

In a nutshell, a logistic classifier is a type of model that works just like a perceptron classifier,
except instead of returning a yes or no answer, it returns a number between 0 and 1. In this case,
the goal is to assign scores close to 0 to the saddest sentences, scores close to 1 to the happiest
sentences, and scores close to 0.5 to neutral sentences. This threshold of 0.5 is common in prac-
tice, though arbitrary. In chapter 7, we’ll see how to adjust it to optimize our model, but for this
chapter we use 0.5.

This chapter relies on chapter 5, because the algorithms we develop here are similar, aside
from some technical differences. Making sure you understand chapter 5 well will help you
understand the material in this chapter. In chapter 5, we described the perceptron algorithm
using an error function that tells us how good a perceptron classifier is and an iterative step that
turns a classifier into a slightly better classifier. In this chapter, we learn the logistic regression
algorithm, which works in a similar way. The main differences follow:

•	 The step function is replaced by a new activation function, which returns values between
0 and 1.

•	 The perceptron error function is replaced by a new error function, which is based on a
probability calculation.

•	 The perceptron trick is replaced by a new trick, which improves the classifier based on
this new error function.

	 Logistic classifiers: A continuous version of perceptron classifiers � 149

aside  In this chapter we carry out a lot of numerical computations. If you follow the
equations, you might find that your calculations differ from those in the book by a small
amount. The book rounds the numbers at the very end of the equation, not in between
steps. This, however, should have very little effect on the final results.

At the end of the chapter, we apply our knowledge to a real-life dataset of movie reviews on the
popular site IMDB (www.imdb.com). We use a logistic classifier to predict whether movie reviews
are positive or negative.

The code for this chapter is available in the following GitHub repository: https://github.com/
luisguiserrano/manning/tree/master/Chapter_6_Logistic_Regression.

Logistic classifiers: A continuous version
of perceptron classifiers
In chapter 5, we covered the perceptron, which is a type of classifier that uses the features of our
data to make a prediction. The prediction can be 1 or 0. This is called a discrete perceptron,
because it returns an answer from a discrete set (the set containing 0 and 1). In this chapter, we
learn continuous perceptrons, which return an answer that can be any number in the interval
between 0 and 1. A more common name for continuous perceptrons is logistic classifiers. The
output of a logistic classifier can be interpreted as a score, and the goal of the logistic classifier is
to assign scores as close as possible to the label of the points—points with label 0 should get
scores close to 0, and points with label 1 should get scores close to 1.

We can visualize continuous perceptrons similar to discrete perceptrons: with a line (or
high-dimensional plane) that separates two classes of data. The only difference is that the dis-
crete perceptron predicts that everything to one side of the line has label 1 and to the other side
has label 0, whereas the continuous perceptron assigns a value from 0 to 1 to all the points based
on their position with respect to the line. Every point on the line gets a value of 0.5. This value
means the model can’t decide if the sentence is happy or sad. For example, in the ongoing senti-
ment analysis example, the sentence “Today is Tuesday” is neither happy nor sad, so the model
would assign it a score close to 0.5. Points in the positive zone get scores larger than 0.5, where
the points even farther away from the 0.5 line in the positive direction get values closer to 1.
Points in the negative zone get scores smaller than 0.5, where, again, the points farther from the
line get values closer to 0. No point gets a value of 1 or 0 (unless we consider points at infinity),
as shown in figure 6.1.

http://www.imdb.com
https://github.com/luisguiserrano/manning/tree/master/Chapter_6_Logistic_Regression
https://github.com/luisguiserrano/manning/tree/master/Chapter_6_Logistic_Regression

150	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

HappySad

1

1

0
0

0.8

0.6

0.3
0.45

Perceptron algorithm

(Discrete)
Logistic regression

(Continuous)

HappySad

Figure 6.1  Left: The perceptron algorithm trains a discrete perceptron, where the predictions are 0 (happy)
and 1 (sad). Right: The logistic regression algorithm trains a continuous perceptron, where the predictions are
numbers between 0 and 1 which indicate the predicted level of happiness.

Why do we call this classification instead of regression, given that the logistic classifier is not out-
putting a state per se but a number? The reason is, after scoring the points, we can classify them
into two classes, namely, those points with a score of 0.5 or higher and those with a score lower
than 0.5. Graphically, the two classes are separated by the boundary line, just like with the per-
ceptron classifier. However, the algorithm we use to train logistic classifiers is called the logistic
regression algorithm. This notation is a bit peculiar, but we’ll keep it as it is to match the
literature.

A probability approach to classification: The sigmoid function
How do we slightly modify the perceptron models from the previous section to get a score for
each sentence, as opposed to a simple “happy” or “sad”? Recall how we made the predictions in
the perceptron models. We scored each sentence by separately scoring each word and adding the
scores, plus the bias. If the score was positive, we predicted that the sentence was happy, and if it
was negative, we predicted that the sentence was sad. In other words, what we did was apply the
step function to the score. The step function returns a 1 if the score was nonnegative and a 0 if it
was negative.

Now we do something similar. We take a function that receives the score as the input and
outputs a number between 0 and 1. The number is close to 1 if the score is positive and close to
zero if the score is negative. If the score is zero, then the output is 0.5. Imagine if you could take
the entire number line and crunch it into the interval between 0 and 1. It would look like the
function in figure 6.2.

	 Logistic classifiers: A continuous version of perceptron classifiers � 151

0 1

0 1 2 3–1–2–3

Figure 6.2  The sigmoid function sends the entire number line to the interval (0,1).

Many functions can help us here, and in this case, we use one called the sigmoid, denoted with
the Greek letter sigma (s). The formula for the sigmoid follows:

() 1

1 x
x

e
σ −=

+

What really matters here is not the formula but what the function does, which is crunching the
real number line into the interval (0,1). In figure 6.3, we can see a comparison of the graphs of
the step and the sigmoid functions.

1

0

1

0

Sigmoid function

(continuous)
Step function

(discrete)

Figure 6.3  Left: The step function used to build discrete perceptrons. It outputs a value of 0 for any negative
input and a value of 1 for any input that is positive or zero. It has a discontinuity at zero. Right: The sigmoid
function used to build continuous perceptrons. It outputs values less than 0.5 for negative inputs and values
greater than 0.5 for positive inputs. At zero, it outputs 0.5. It is continuous and differentiable everywhere.

The sigmoid function is, in general, better than the step function for several reasons. Having
continuous predictions gives us more information than discrete predictions. In addition, when
we get into the calculus, the sigmoid function has a much nicer derivative than the step function.
The step function has a derivative of zero, with the exception of the origin, where it is undefined.
In table 6.1, we calculate some values of the sigmoid function to make sure the function does
what we want it to.

152	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

Table 6.1  Some inputs and their outputs under the sigmoid function. Notice that for large
negative inputs, the output is close to 0, whereas for large positive inputs, the output is close
to 1. For the input 0, the output is 0.5.

x s(x)

–5 0.007

–1 0.269

0 0.5

1 0.731

5 0.993

The prediction of a logistic classifier is obtained by applying the sigmoid function to the score,
and it returns a number between 0 and 1, which, as was mentioned earlier, can be interpreted in
our example as the probability that the sentence is happy.

In chapter 5, we defined an error function for a perceptron, called the perceptron error. We
used this perceptron error to iteratively build a perceptron classifier. In this chapter, we follow
the same procedure. The error of a continuous perceptron is slightly different from the one of a
discrete predictor, but they still have similarities.

The dataset and the predictions
In this chapter, we use the same use case as in chapter 5, in which we have a dataset of sentences
in alien language with the labels “happy” and “sad,” denoted by 1 and 0, respectively. The dataset
for this chapter is slightly different than that in chapter 5, and it is shown in table 6.2.

Table 6.2  The dataset of sentences with their happy/sad labels. The coordinates are the
number of appearances of the words aack and beep in the sentence.

Words Coordinates
(#aack, #beep) Label

Sentence 1 Aack beep beep aack aack. (3,2) Sad (0)

Sentence 2 Beep aack beep. (1,2) Happy (1)

Sentence 3 Beep! (0,1) Happy (1)

Sentence 4 Aack aack. (2,0) Sad (0)

The model we use has the following weights and bias:

Logistic Classifier 1

•	 Weight of Aack: a = 1

•	 Weight of Beep: b = 2

•	 Bias: c = –4

	 Logistic classifiers: A continuous version of perceptron classifiers � 153

We use the same notation as in chapter 5, where the variables x
aack

 and x
beep

 keep track of the
appearances of aack and beep, respectively. A perceptron classifier would predict according to the
formula ŷ = step(ax

aack
 + bx

beep
+ c), but because this is a logistic classifier, it uses the sigmoid

function instead of the step function. Thus, its prediction is ŷ = s(ax
aack

 + bx
beep

+ c). In this case,
the prediction follows:

Prediction: ŷ = s(1 · x
aack

 + 2 · x
beep

– 4)

Therefore, the classifier makes the following predictions on our dataset:

•	 Sentence 1: ŷ = s(3 + 2 · 2 – 4) = s(3) = 0.953.

•	 Sentence 2: ŷ = s(1 + 2 · 2 – 4) = s(1) = 0.731.

•	 Sentence 3: ŷ = s(0 + 2 · 1 – 4) = s(–2) = 0.119.

•	 Sentence 4: ŷ = s(2 + 2 · 0 – 4) = s(–2) = 0.119.

The boundary between the “happy” and “sad” classes is the line with equation x
aack

+ 2x
beep

– 4 = 0,
depicted in figure 6.4.

1 2 3 4

1

2

3

HappySad

Point 1Point 2

Point 4

Label: 0
Prediction: 0.953

Label: 1
Prediction: 0.731

Label: 1
Prediction: 0.119

Label: 0
Prediction: 0.119

Point 3

Figure 6.4  The plot of the dataset in table 6.2 with predictions. Notice that points 2 and 4 are correctly
classified, but points 1 and 3 are misclassified.

154	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

This line splits the plane into positive (happy) and negative (sad) zones. The positive zone is
formed by the points with prediction higher than or equal to 0.5, and the negative zone is formed
by those with prediction less than 0.5.

The error functions: Absolute, square, and log loss
In this section, we build three error functions for a logistic classifier. What properties would you
like a good error function to have? Some examples follow:

•	 If a point is correctly classified, the error is a small number.

•	 If a point is incorrectly classified, the error is a large number.

•	 The error of a classifier for a set of points is the sum (or average) of the errors at all the
points.

Many functions satisfy these properties, and we will see three of them; the absolute error, the
square error, and the log loss. In table 6.3, we have the labels and predictions for the four points
corresponding to the sentences in our dataset with the following characteristics:

•	 The points on the line are given a prediction of 0.5.

•	 Points that are in the positive zone are given predictions higher than 0.5, and the farther
a point is from the line in that direction, the closer its prediction is to 1.

•	 Points that are in the negative zone are given predictions lower than 0.5, and the farther a
point is from the line in that direction, the closer its prediction is to 0.

Table 6.3  Four points—two happy and two sad with their predictions—as illustrated in
figure 6.4. Notice that points 1 and 4 are correctly classified, but points 2 and 3 are not. A good
error function should assign small errors to the correctly classified points and large errors to
the poorly classified points.

Point Label Prediction Error?

1 0 (Sad) 0.953 Should be large

2 1 (Happy) 0.731 Should be small

3 1 (Happy) 0.119 Should be large

4 0 (Sad) 0.119 Should be small

Notice that in table 6.3, points 2 and 4 get a prediction that is close to the label, so they should
have small errors. In contrast, points 1 and 3 get a prediction that is far from the label, so they
should have large errors. Three error functions that have this particular property follow:

Error function 1: Absolute error

The absolute error is similar to the absolute error we defined for linear regression in chapter 3. It
is the absolute value of the difference between the prediction and the label. As we can see, it is
large when the prediction is far from the label and small when they are close.

	 Logistic classifiers: A continuous version of perceptron classifiers � 155

Error function 2: Square error

Again, just like in linear regression, we also have the square error. This is the square of the differ-
ence between the prediction and the label, and it works for the same reason that the absolute
error works.

Before we proceed, let’s calculate the absolute and square error for the points in table 6.4.
Notice that points 2 and 4 (correctly classified) have small errors, and points 1 and 3 (incorrectly
classified) have larger errors.

Table 6.4  We have attached the absolute error and the square error for the points in
table 6.3. Notice that as we desired, points 2 and 4 have small errors, and points 1 and 3
have larger errors.

Point Label Predicted label Absolute Error Square Error

1 0 (Sad) 0.953 0.953 0.908

2 1 (Happy) 0.731 0.269 0.072

3 1 (Happy) 0.119 0.881 0.776

4 0 (Sad) 0.119 0.119 0.014

The absolute and the square errors may remind you of the error functions used in regression.
However, in classification, they are not so widely used. The most popular is the next one we
see. Why is it more popular? The math (derivatives) works much nicer with the next function.
Also, these errors are all pretty small. In fact, they are all smaller than 1, no matter how poorly
classified the point is. The reason is that the difference (or the square of the difference)
between two numbers that are between 0 and 1 is at most 1. To properly train models, we
need error functions that take larger values than that. Thankfully, a third error function can
do that for us.

Error function 3: log loss

The log loss is the most widely used error function for continuous perceptrons. Most of the error
functions in this book have the word error in their name, but this one instead has the word loss
in its name. The log part in the name comes from a natural logarithm that we use in the formula.
However, the real soul of the log loss is probability.

The outputs of a continuous perceptron are numbers between 0 and 1, so they can be consid-
ered probabilities. The model assigns a probability to every data point, and that is the probability
that the point is happy. From this, we can infer the probability that the point is sad, which is 1
minus the probability of being happy. For example, if the prediction is 0.75, that means the
model believes the point is happy with a probability of 0.75 and sad with a probability of 0.25.

Now, here is the main observation. The goal of the model is to assign high probabilities to the
happy points (those with label 1) and low probabilities to the sad points (those with label 0).
Notice that the probability that a point is sad is 1 minus the probability that the point is happy.
Thus, for each point, let’s calculate the probability that the model gives to its label. For the points
in our dataset, the corresponding probabilities follow:

156	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

•	 Point 1:

	– Label = 0 (sad)

	– Prediction (probability of being happy) = 0.953

	– Probability of being its label: 1 – 0.953 = 0.047

•	 Point 2:

	– Label = 1 (happy)

	– Prediction (probability of being happy) = 0.731

	– Probability of being its label: 0.731

•	 Point 3:

	– Label = 1 (happy)

	– Prediction (probability of being happy) = 0.119

	– Probability of being its label: 0.119

•	 Point 4:

	– Label = 0 (sad)

	– Prediction (probability of being happy) = 0.119

	– Probability of being its label: 1 – 0.119 = 0.881

Notice that points 2 and 4 are the points that are well classified, and the model assigns a high
probability that they are their own label. In contrast, points 1 and 3 are poorly classified, and the
model assigns a low probability that they are their own label.

The logistic classifier, in contrast with the perceptron classifier, doesn’t give definite answers.
The perceptron classifier would say, “I am 100% sure that this point is happy,” whereas the logis-
tic classifier says, “Your point has a 73% probability of being happy and 27% of being sad.”
Although the goal of the perceptron classifier is to be correct as many times as possible, the goal
of the logistic classifier is to assign to each point the highest possible probability of having the
correct label. This classifier assigns the probabilities 0.047, 0.731, 0.119, and 0.881 to the four
labels. Ideally, we’d like these numbers to be higher. How do we measure these four numbers?
One way would be to add them or average them. But because they are probabilities, the natural
approach is to multiply them. When events are independent, the probability of them occurring
simultaneously is the product of their probabilities. If we assume that the four predictions are
independent, then the probability that this model assigns to the labels “sad, happy, happy, sad” is
the product of the four numbers, which is 0.047 · 0.731 · 0.119 · 0.881 = 0.004. This is a very small
probability. Our hope would be that a model that fits this dataset better would result in a higher
probability.

That probability we just calculated seems like a good measure for our model, but it has some
problems. For instance, it is a product of many small numbers. Products of many small numbers

	 Logistic classifiers: A continuous version of perceptron classifiers � 157

tend to be tiny. Imagine if our dataset had one million points. The probability would be a prod-
uct of one million numbers, all between 0 and 1. This number may be so small that a computer
may not be able to represent it. Also, manipulating a product of one million numbers is extremely
difficult. Is there any way that we could perhaps turn it into something easier to manipulate, like
a sum?

Luckily for us, we have a convenient way to turn products into sums—using the logarithms.
For this entire book, all we need to know about the logarithm is that it turns products into sums.
More specifically, the logarithm of a product of two numbers is the sum of the logarithms of the
numbers, as shown next:

ln(a · b) = ln(a) + ln(b)

We can use logarithms in base 2, 10, or e. In this chapter, we use the natural logarithm, which is on
base e. However, the same results can be obtained if we were to use the logarithm in any other base.

If we apply the natural logarithm to our product of probabilities, we obtain

ln(0.047 · 0.731 · 0.119 · 0.881) = ln(0.047) + ln(0.731) + ln(0.119) + ln(0.881) = –5.616.

One small detail. Notice that the result is a negative number. In fact, this will always be the case,
because the logarithm of a number between 0 and 1 is always negative. Thus, if we take the neg-
ative logarithm of the product of probabilities, it is always a positive number.

The log loss is defined as the negative logarithm of the product of probabilities, which is also
the sum of the negative logarithms of the probabilities. Furthermore, each of the summands is
the log loss at that point. In table 6.5, you can see the calculation of the log loss for each of the
points. By adding the log losses of all the points, we obtain a total log loss of 5.616.

Table 6.5  Calculation of the log loss for the points in our dataset. Notice that points that are
well classified (2 and 4) have a small log loss, whereas points that are poorly classified (1 and 3)
have a large log loss.

Point Label Predicted label Probability of being its label Log loss

1 0 (Sad) 0.953 0.047 –ln(0.047) = 3.049

2 1 (Happy) 0.731 0.731 –ln(0.731) = 0.313

3 1 (Happy) 0.119 0.119 –ln(0.119) = 2.127

4 0 (Sad) 0.119 0.881 –ln(0.881) = 0.127

Notice that, indeed, the well-classified points (2 and 4) have a small log loss, and the poorly clas-
sified points have a large log loss. The reason is that if a number x is close to 0, –ln(x) is a large
number, but if x is close to 1, then –ln(x) is a small number.

To summarize, the steps for calculating the log loss follow:

•	 For each point, we calculate the probability that the classifier gives its label.

	– For the happy points, this probability is the score.

	– For the sad points, this probability is 1 minus the score.

158	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

•	 We multiply all these probabilities to obtain the total probability that the classifier has
given to these labels.

•	 We apply the natural logarithm to that total probability.

•	 The logarithm of a product is the sum of the logarithms of the factors, so we obtain a
sum of logarithms, one for each point.

•	 We notice that all the terms are negative, because the logarithm of a number less than 1 is
a negative number. Thus, we multiply everything by –1 to get a sum of positive numbers.

•	 This sum is our log loss.

The log loss is closely related to the concept of cross-entropy, which is a way to measure similarity
between two probability distributions. More details about cross-entropy are available in the ref-
erences in appendix C.

Formula for the log loss

The log loss for a point can be condensed into a nice formula. Recall that the log loss is the negative
logarithm of the probability that the point is its label (happy or sad). The prediction the model gives
to each point is ŷ, and that is the probability that the point is happy. Thus, the probability that the
point is sad, according to the model, is 1 – ŷ. Therefore, we can write the log loss as follows:

•	 If the label is 0: log loss = –ln(1 – ŷ)

•	 If the label is 1: log loss = –ln(ŷ)

Because the label is y, the previous if statement can be condensed into the following formula:

log loss = –y ln(ŷ) – (1 – y) ln(1 – ŷ)

The previous formula works because if the label is 0, the first summand is 0, and if the label is 1,
the second summand is 0. We use the term log loss when we refer to the log loss of a point or of a
whole dataset. The log loss of a dataset is the sum of the log losses at every point.

Comparing classifiers using the log loss
Now that we have settled on an error function for logistic classifiers, the log loss, we can use it to
compare two classifiers. Recall that the classifier we’ve been using in this chapter is defined by
the following weights and bias:

Logistic Classifier 1

•	 Weight of Aack: a = 1

•	 Weight of Beep: b = 2

•	 Bias: c = –4

In this section, we compare it with the following logistic classifier:

	 Logistic classifiers: A continuous version of perceptron classifiers � 159

Logistic Classifier 2

•	 Weight of Aack: a = –1

•	 Weight of Beep: b = 1

•	 Bias: c = 0

The predictions that each classifier makes follow:

•	 Classifier 1: ŷ = s(xaack + 2xbeep – 4)

•	 Classifier 2: ŷ = s(–xaack + xbeep)

The predictions of both classifiers are recorded in table 6.6, and the plot of the dataset and the
two boundary lines are shown in figure 6.5.

Table 6.6  Calculation of the log loss for the points in our dataset. Notice that the predictions
made by classifier 2 are much closer to the labels of the points than the predictions made by
classifier 1. Thus, classifier 2 is a better classifier.

Point Label Classifier 1 prediction Classifier 2 prediction

1 0 (Sad) 0.953 0.269

2 1 (Happy) 0.731 0.731

3 1 (Happy) 0.119 0.731

4 0 (Sad) 0.881 0.119

1

2

3

1 2 3 4

HappySad

1

2

3

1 2 3 4

Happy

Sad

Classifier 1 Classifier 2

Figure 6.5  Left: A bad classifier that makes two mistakes. Right: A good classifier that classifies all four points
correctly.

From the results in table 6.6 and figure 6.5, it is clear that classifier 2 is much better than classifier
1. For instance, in figure 6.5, we can see that classifier 2 correctly located the two happy sentences
in the positive zone and the two sad sentences in the negative zone. Next, we compare the log

160	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

losses. Recall that the log loss for classifier 1 was 5.616. We should obtain a smaller log loss for
classifier 2, because this is the better classifier.

According to the formula log loss = –y ln(ŷ) – (1 – y) ln(1 – ŷ), the log loss for classifier 2 at each
of the points in our dataset follows:

•	 Point 1: y = 0, ŷ = 0.269:

	– log loss = ln(1 – 0.269) = 0.313

•	 Point 2: y = 1, ŷ = 0.73:

	– log loss = ln(0.721) = 0.313

•	 Point 3: y = 1, ŷ = 0.73:

	– log loss = ln(731) = 0.313

•	 Point 4: y = 0, ŷ = 0.119:

	– log loss = ln(1 – 0.119) = 0.127

The total log loss for the dataset is the sum of these four, which is 1.067. Notice that this is much
smaller than 5.616, confirming that classifier 2 is indeed much better than classifier 1.

How to find a good logistic classifier? The logistic
regression algorithm
In this section, we learn how to train a logistic classifier. The process is similar to the process of
training a linear regression model or a perceptron classifier and consists of the following steps:

•	 Start with a random logistic classifier.

•	 Repeat many times:

	– Slightly improve the classifier.

•	 Measure the log loss to decide when to stop running the loop.

The key to the algorithm is the step inside the loop, which consists of slightly improving a logistic
classifier. This step uses a trick called the logistic trick. The logistic trick is similar to the percep-
tron trick, as we see in the next section.

The logistic trick: A way to slightly improve the continuous perceptron
Recall from chapter 5 that the perceptron trick consists of starting with a random classifier, succes-
sively picking a random point, and applying the perceptron trick. It had the following two cases:

•	 Case 1: If the point is correctly classified, leave the line as it is.

•	 Case 2: If the point is incorrectly classified, move the line a little closer to the point.

	 How to find a good logistic classifier? The logistic regression algorithm� 161

The logistic trick (illustrated in figure 6.6) is similar to the perceptron trick. The only thing that
changes is that when the point is well classified, we move the line away from the point. It has the
following two cases:

•	 Case 1: If the point is correctly classified, slightly move the line away from the point.

•	 Case 2: If the point is incorrectly classified, slightly move the line closer to the point.

1 2 3 4
HappySad

Point 1Point 2

Point 4

Come closer!
Move away!

Move away!

Point 3

Come closer!

Figure 6.6  In the logistic regression algorithm, every point has a say. Points that are correctly classified tell the
line to move farther away, to be deeper in the correct zone. Points that are incorrectly classified tell the line to
come closer, in hopes of one day being on the correct side of the line.

Why do we move the line away from a correctly classified point? If the point is well classified, it
means it is in the correct zone with respect to the line. If we move the line farther away, we move
the point even deeper into the correct zone. Because the prediction is based on how far the point
is from the boundary line, for points in the positive (happy) zone, the prediction increases if the
point is farther from the line. Similarly, for points in the negative (sad) zone, the prediction
decreases if the point is farther from the line. Thus, if the label of the point is 1, we are increasing
the prediction (making it even closer to 1), and if the label of the point is 0, we are decreasing the
prediction (making it even closer to 0).

For example, look at classifier 1 and the first sentence in our dataset. Recall that the classifier
has weights a = 1, b = 2, and bias c = –4. The sentence corresponds to a point of coordinates (x

aack
,

x
beep

) = (3,2), and label y = 0. The prediction we obtained for this point was ŷ = s(3 + 2 · 2 – 4) =
s(3) = 0.953. The prediction is quite far from the label, so the error is high: in fact, in table 6.5,
we calculated it to be 3.049. The error that this classifier made was to think that this sentence is

162	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

happier than it is. Thus, to tune the weights to ensure that the classifier reduces the prediction for
this sentence, we should drastically decrease the weights a, b, and the bias c.

Using the same logic, we can analyze how to tune the weights to improve the classification for
the other points. For the second sentence in the dataset, the label is y = 1 and the prediction is
0.731. This is a good prediction, but if we want to improve it, we should slightly increase the
weights and the bias. For the third sentence, because the label is y = 1 and the prediction is ŷ =
0.119, we should drastically increase the weights and the bias. Finally, for the fourth sentence, the
label is y = 0 and the prediction is ŷ = 0.119, so we should slightly decrease the weights and the
bias. These are summarized in table 6.7.

Table 6.7  Calculation of the log loss for the points in our dataset. Notice that points that are
well classified (2 and 4) have a small log loss, whereas points that are poorly classified (1 and 3)
have a large log loss.

Point Label y Classifier 1
prediction y

How to tune the weights a, b,
and the bias c y – ŷ

1 0 0.953 Decrease by a large amount –0.953

2 1 0.731 Increase by a small amount 0.269

3 1 0.119 Increase by a large amount 0.881

4 0 0.119 Decrease by a small amount –0.119

The following observations can help us figure out the perfect amount that we want to add to the
weights and bias to improve the predictions:

•	 Observation 1: the last column of table 6.7 has the value of the label minus the prediction.
Notice the similarities between the two rightmost columns in this table. This hints that
the amount we should update the weights and the bias should be a multiple of y – ŷ.

•	 Observation 2: imagine a sentence in which the word aack appears 10 times and beep
appears once. If we are to add (or subtract) a value to the weights of these two words, it
makes sense to think that the weight of aack should be updated by a larger amount,
because this word is more crucial to the overall score of the sentence. Thus, the amount
we should update the weight of aack should be multiplied by x

aack
, and the amount we

should update the weight of beep should be multiplied by x
beep

.

•	 Observation 3: the amount that we update the weights and biases should also be multiplied
by the learning rate h because we want to make sure that this number is small.

Putting the three observations together, we conclude that the following is a good set of updated
weights:

•	 a' = a + h(y – ŷ)x
1

•	 b' = b + h(y – ŷ)x
2

•	 c' = c + h(y – ŷ)

	 How to find a good logistic classifier? The logistic regression algorithm� 163

Thus, the pseudocode for the logistic trick follows. Notice how similar it is to the pseudocode for
the perceptron trick we learned at the end of the section “The perceptron trick” in chapter 5.

Pseudocode for the logistic trick

Inputs:

•	 A logistic classifier with weights a, b, and bias c

•	 A point with coordinates (x
1,

x
2
) and label y

•	 A small value h (the learning rate)

Output:

•	 A perceptron with new weights a', b', and bias c' which is at least as good as the input
perceptron for that point

Procedure:

•	 The prediction the perceptron makes at the point is ŷ = s(ax
1
+ bx

2
+ c).

Return:

•	 The perceptron with the following weights and bias:

	– a' = a + h(y – ŷ)x
1

	– b' = b + h(y – ŷ)x
2

	– c' = c + h(y – ŷ)

The way we updated the weights and bias in the logistic trick is no coincidence. It comes from
applying the gradient descent algorithm to reduce the log loss. The mathematical details are
described in appendix B, section “Using gradient descent to train classification models.”

To verify that the logistic trick works in our case, let’s apply it to the current dataset. In fact,
we’ll apply the trick to each of the four points separately, to see how much each one of them
would modify the weights and bias of the model. Finally, we’ll compare the log loss at that point
before and after the update and verify that it has indeed been reduced. For the following calcula-
tions, we use a learning rate of h = 0.05.

Updating the classifier using each of the sentences

Using the first sentence:

•	 Initial weights and bias: a = 1, b = 2, c = –4

•	 Label: y = 0

•	 Prediction: 0.953

•	 Initial log loss: –0 · ln(0.953) – 1 ln(1 – 0.953) = 3.049

•	 Coordinates of the point: x
aack

= 3, x
beep

= 2

•	 Learning rate: h = 0.01

164	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

•	 Updated weights and bias:

	– a' = 1 + 0.05 · (0 – 0.953) · 3 = 0.857

	– b' = 2 + 0.05 · (0 – 0.953) · 2 = 1.905

	– c' = –4 + 0.05 · (0 – 0.953) = –4.048

•	 Updated prediction: ŷ = s(0.857 · 3 + 1.905 · 2 – 4.048 = 0.912. (Notice that the prediction
decreased, so it is now closer to the label 0.)

•	 Final log loss: –0 · ln(0.912) – 1 ln(1 – 0.912) = 2.426. (Note that the error decreased from
3.049 to 2.426.)

The calculations for the other three points are shown in table 6.8. Notice that in the table, the
updated prediction is always closer to the label than the initial prediction, and the final log loss
is always smaller than the initial log loss. This means that no matter which point we use for the
logistic trick, we’ll be improving the model for that point and decreasing the final log loss.

Table 6.8  Calculations of the predictions, log loss, updated weights, and updated predictions
for all the points.

Point Coordinates Label Initial
prediction

Initial log
loss

Updated
weights:

Updated
prediction

Final log
loss

1 (3,2) 0 0.953 3.049 a’ = 0.857

b’ = 1.905

c’ = –4.048

0.912 2.426

2 (1,2) 1 0.731 0.313 a’ = 1.013

b’ = 2.027

c’ = –3.987

0.747 0.292

3 (0,1) 1 0.119 2.127 a’ = 1

b’ = 2.044

c’ = –3.956

0.129 2.050

4 (2,0) 0 0.119 0.127 a’ = 0.988

b’ = 2

c’ = –4.006

0.127 0.123

At the beginning of this section, we discussed that the logistic trick can also be visualized geo-
metrically as moving the boundary line with respect to the point. More specifically, the line is
moved closer to the point if the point is misclassified and farther from the point if the point is
correctly classified. We can verify this by plotting the original classifier and the modified classi-
fier in the four cases in table 6.8. In figure 6.7, you can see the four plots. In each of them, the
solid line is the original classifier, and the dotted line is the classifier obtained by applying the

	 How to find a good logistic classifier? The logistic regression algorithm� 165

logistic trick, using the highlighted point. Notice that points 2 and 4, which are correctly classified,
push the line away, whereas points 1 and 3, which are misclassified, move the line closer to them.

Point: (3,2) (misclassified)
Line 1:

Line 2:

Point: (1,2) (correctly classified)
Line 1:

Line 2:

Point: (0,1) (misclassified)
Line 1:

Line 2:

Point: (2,0) (correctly classified)
Line 1:

Line 2:

Figure 6.7  The logistic trick applied to each of the four data points. Notice that for correctly classified points,
the line moves away from the point, whereas for misclassified points, the line moves closer to the point.

Repeating the logistic trick many times: The logistic regression algorithm
The logistic regression algorithm is what we use to train a logistic classifier. In the same way that
the perceptron algorithm consists of repeating the perceptron trick many times, the logistic regres-
sion algorithm consists of repeating the logistic trick many times. The pseudocode follows:

Pseudocode for the logistic regression algorithm

Inputs:

•	 A dataset of points, labeled 1 and 0

•	 A number of epochs, n

•	 A learning rate h

166	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

Output:

•	 A logistic classifier consisting of a set of weights and a bias, which fits the dataset

Procedure:

•	 Start with random values for the weights and bias of the logistic classifier.

•	 Repeat many times:

	– Pick a random data point.

	– Update the weights and the bias using the logistic trick.

Return:

•	 The perceptron classifier with the updated weights and bias

As we saw previously, each iteration of the logistic trick either moves the line closer to a misclas-
sified point or farther away from a correctly classified point.

Stochastic, mini-batch, and batch gradient descent
The logistic regression algorithm, together with linear regression and the perceptron, is another
algorithm that is based on gradient descent. If we use gradient descent to reduce the log loss, the
gradient descent step becomes the logistic trick.

The general logistic regression algorithm works not only for datasets with two features but for
datasets with as many features as we want. In this case, just like the perceptron algorithm, the
boundary won’t look like a line, but it would look like a higher-dimensional hyperplane splitting
points in a higher dimensional space. However, we don’t need to visualize this higher-dimen-
sional space; we only need to build a logistic regression classifier with as many weights as features
in our data. The logistic trick and the logistic algorithm update the weights in a similar way to
what we did in the previous sections.

Just like with the previous algorithms we learned, in practice, we don’t update the model by
picking one point at a time. Instead, we use mini-batch gradient descent—we take a batch of
points and update the model to fit those points better. For the fully general logistic regression
algorithm and a thorough mathematical derivation of the logistic trick using gradient descent,
please refer to appendix B, section “Using gradient descent to train classification models.”

Coding the logistic regression algorithm
In this section, we see how to code the logistic regression algorithm by hand. The code for this
section follows:

•	 Notebook: Coding_logistic_regression.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_6_Logistic_
Regression/Coding_logistic_regression.ipynb

https://github.com/luisguiserrano/manning/blob/master/Chapter_6_Logistic_Regression/Coding_logistic_regression.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_6_Logistic_Regression/Coding_logistic_regression.ipynb

	 Coding the logistic regression algorithm� 167

We’ll test our code in the same dataset that we used in chapter 5. The dataset is shown in table 6.9.

Table 6.9  The dataset that we will fit with a logistic classifier

Aack x1 Beep x2 Label y
1 0 0

0 2 0

1 1 0

1 2 0

1 3 1

2 2 1

2 3 1

3 2 1

The code for loading our small dataset follows, and the plot of the dataset is shown in figure 6.8:

import numpy as np
features = np.array([[1,0],[0,2],[1,1],[1,2],[1,3],[2,2],[2,3],[3,2]])
labels = np.array([0,0,0,0,1,1,1,1])

Figure 6.8  The plot of our dataset, where the happy sentences are represented by triangles and the sad
sentences by squares.

168	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

Coding the logistic regression algorithm by hand
In this section, we see how to code the logistic trick and the logistic regression algorithm by
hand. More generally, we’ll code the logistic regression algorithm for a dataset with n weights.
The notation we use follows:

•	 Features: x
1
, x

2
, … , x

n

•	 Label: y

•	 Weights: w
1
, w

2
, … , w

n

•	 Bias: b

The score for a particular sentence is the sigmoid of the sum of the weight of each word (w
i
) times the

number of times that appears (x
i
), plus the bias (b). Notice that we use the summation notation for

1 21

n

i ni
a a a a

=
= + + +∑  .

•	 Prediction: ŷ = s(w
1
x

1
 + w

2
x

2
 + … + w

n
x

n
 + b) = s(

1

n

i ii
w x b

=
+∑).

For our current problem, we’ll refer to x
aack

 and x
beep

 as x
1
 and x

2
, respectively. Their correspond-

ing weights are w
1
 and w

1
, and the bias is b.

We start by coding the sigmoid function, the score, and the prediction. Recall that the formula
for the sigmoid function is

() 1
 .

1 x
x

e
σ −=

+

def sigmoid(x):
 return np.exp(x)/(1+np.exp(x))

For the score function, we use the dot product between the features and the weights. Recall that
the dot product between vectors (x

1
, x

2
, … , x

n
) and (w

1
, w

2
, … , w

n
) is w

1
 x

1
+ w

2
 x

2
+ … + w

n
 x

n
.

def score(weights, bias, features):
 return np.dot(weights, features) + bias

Finally, recall that the prediction is the sigmoid activation function applied to the score.

def prediction(weights, bias, features):
 return sigmoid(score(weights, bias, features))

Now that we have the prediction, we can proceed to the log loss. Recall that the formula for the
log loss is

log loss = –y ln(ŷ) – (1 – y) ln(1 – y).

Let’s code that formula as follows:

	 Coding the logistic regression algorithm� 169

def log_loss(weights, bias, features, label):
 pred = prediction(weights, bias, features)
 return -label*np.log(pred) - (1-label)*np.log(1-pred)

We need the log loss over the whole dataset, so we can add over all the data points as shown here:

def total_log_loss(weights, bias, features, labels):
 total_error = 0
 for i in range(len(features)):
 total_error += log_loss(weights, bias, features[i], labels[i])
 return total_error

Now we are ready to code the logistic regression trick, and the logistic regression algorithm. In
more than two variables, recall that the logistic regression step for the i-th weight is the following
formula, where h is the learning rate:

•	 w
i
 ® w

i
 + h(y – ŷ)x

i
 for i = 1, 2, … , n

•	 b ® b + h(y – ŷ) for i = 1, 2, … , n.

def logistic_trick(weights, bias, features, label, learning_rate = 0.01):
 pred = prediction(weights, bias, features)
 for i in range(len(weights)):
 weights[i] += (label-pred)*features[i]*learning_rate
 bias += (label-pred)*learning_rate
 return weights, bias

def logistic_regression_algorithm(features, labels, learning_rate = 0.01,
epochs = 1000):

 utils.plot_points(features, labels)
 weights = [1.0 for i in range(len(features[0]))]
 bias = 0.0
 errors = []
 for i in range(epochs):
 errors.append(total_log_loss(weights, bias, features, labels))
 j = random.randint(0, len(features)-1)
 weights, bias = logistic_trick(weights, bias, features[j], labels[j])
 return weights, bias

Now we can run the logistic regression algorithm to build a logistic classifier that fits our dataset
as follows:

logistic_regression_algorithm(features, labels)
([0.46999999999999953, 0.09999999999999937], -0.6800000000000004)

The classifier we obtain has the following weights and biases:

•	 w
1
 = 0.47

•	 w
2
 = 0.10

•	 b = –0.68

170	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

The plot of the classifier (together with a plot of the previous classifiers at each of the epochs) is
depicted in figure 6.9.

Figure 6.9  The boundary of the resulting logistic classifier

In figure 6.10, we can see the plot of the classifiers corresponding to all the epochs (left) and the
plot of the log loss (right). On the plot of the intermediate classifiers, the final one corresponds
to the dark line. Notice from the log loss plot that, as we run the algorithm for more epochs, the
log loss decreases drastically, which is exactly what we want. Furthermore, the log loss is never
zero, even though all the points are correctly classified. This is because for any point, no matter
how well classified, the log loss is never zero. Contrast this to figure 5.26 in chapter 5, where the
perceptron loss indeed reaches a value of zero when every point is correctly classified.

Classifier Error

Figure 6.10  Left: A plot of all the intermediate steps of the logistic regression algorithm. Notice that we start
with a bad classifier and slowly move toward a good one (the thick line). Right: The error plot. Notice that the
more epochs we run the logistic regression algorithm, the lower the error gets.

	 Real-life application: Classifying IMDB reviews with Turi Create � 171

Real-life application: Classifying IMDB reviews
with Turi Create
In this section, we see a real-life application of the logistic classifier in sentiment analysis. We use
Turi Create to build a model that analyzes movie reviews on the popular IMDB site. The code for
this section follows:

•	 Notebook: Sentiment_analysis_IMDB.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_6_Logistic_
Regression/Sentiment_analysis_IMDB.ipynb

•	 Dataset: IMDB_Dataset.csv

First, we import Turi Create, download the dataset, and convert it into an SFrame, which we call
movies, as follows:

import turicreate as tc
movies = tc.SFrame('IMDB Dataset.csv')

The first five rows of the dataset appear in table 6.10.

Table 6.10  The first five rows of the IMDB dataset. The Review column has the text of the
review, and the Sentiment column has the sentiment of the review, which can be positive or
negative.

Review Sentiment

One of the other reviewers has mentioned... Positive

A wonderful little production... Positive

I thought this was a wonderful day to spend... Positive

Basically, there’s a family where a little... Negative

Petter Mattei’s “Love in the time of money” is a... Positive

The dataset has two columns, one with the review, as a string, and one with the sentiment, as
positive or negative. First, we need to process the string, because each of the words needs to be a
different feature. The Turi Create built-in function count_words in the text_analytics pack-
age is useful for this task, because it turns a sentence into a dictionary with the word counts. For
example, the sentence “to be or not to be” is turned into the dictionary {‘to’:2, ‘be’:2, ‘or’:1, ‘not’:1}.
We add a new column called words containing this dictionary as follows:

movies['words'] = tc.text_analytics.count_words(movies['review'])

The first few rows of our dataset with the new column are shown in table 6.11.

https://github.com/luisguiserrano/manning/blob/master/Chapter_6_Logistic_Regression/Sentiment_analysis_IMDB.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_6_Logistic_Regression/Sentiment_analysis_IMDB.ipynb

172	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

Table 6.11  The Words column is a dictionary where each word in the review is recorded
together with its number of appearances. This is the column of features for our logistic
classifier.

Review Sentiment Words

One of the other reviewers has
mentioned...

Positive {'if': 1.0, 'viewing': 1.0,
'comfortable': 1.0, ...

A wonderful little production... Positive {'done': 1.0, 'every': 1.0,
'decorating': 1.0, ...

I thought this was a wonderful
day to spend...

Positive {'see': 1.0, 'go': 1.0, 'great': 1.0,
'superm ...

Basically, there’s a family
where a little...

Negative {'them': 1.0, 'ignore': 1.0,
'dialogs': 1.0, ...

Peter Mattei’s Love in the Time
of Money is a...

Positive {'work': 1.0, 'his': 1.0, 'for': 1.0,
'anxiously': ...

We are ready to train our model! For this, we use the function create in the logistic_classi-
fier package, in which we specify the target (label) to be the sentiment column and the features
to be the words column. Note that the target is expressed as a string with the name of the column
containing the label, but the features are expressed as an array of strings with the names of the
columns containing each of the features (in case we need to specify several columns), as shown
here:

model = tc.logistic_classifier.create(movies, features=['words'],
target='sentiment')

Now that we’ve trained our model, we can look at the weights of the words, with the coeffi-
cients command. The table we obtain has several columns, but the ones we care about are
index and value, which show the words and their weights. The top five follow:

•	 (intercept): 0.065

•	 if: –0.018

•	 viewing: 0.089

•	 comfortable: 0.517

•	 become: 0.106

The first one, called intercept, is the bias. Because the bias of the model is positive, the empty
review is positive, as we learned in chapter 5, in the section “The bias, the y-intercept, and the
inherent mood of a quiet alien.” This makes sense, because users who rate movies negatively tend
to leave a review, whereas many users who rate movies positively don’t leave any review. The
other words are neutral, so their weights don’t mean very much, but let’s explore the weights of
some words, such as wonderful, horrible, and the, as shown next:

	 Classifying into multiple classes: The softmax function� 173

•	 wonderful: 1.043

•	 horrible: –1.075

•	 the: 0.0005

As we see, the weight of the word wonderful is positive, the weight of the word horrible is negative,
and the weight of the word the is small. This makes sense: wonderful is a positive word, horrible
is a negative word, and the is a neutral word.

As a last step, let’s find the most positive and negative reviews. For this, we use the model to
make predictions for all the movies. These predictions will be stored in a new column called
predictions, using the following command:

movies['prediction'] = model.predict(movies, output_type='probability')

Let’s find the most positive and most negative movies, according to the model. We do this by
sorting the array, as follows:

Most positive review:

movies.sort('predictions')[-1]

Output: “It seems to me that a lot of people don’t know that Blade is actually a superhero movie
on par with X-Men…”

Most negative review:

movies.sort('predictions')[0]

Output: “Even duller, if possible, than the original…”

We could do a lot more to improve this model. For example, some text manipulation techniques,
such as removing punctuation and capitalization, or removing stop words (such as the, and, of,
it), tend to give us better results. But it’s great to see that with a few lines of code, we can build
our own sentiment analysis classifier!

Classifying into multiple classes: The softmax function
So far we have seen continuous perceptrons classify two classes, happy and sad. But what if we
have more classes? At the end of chapter 5, we discussed that classifying between more than two
classes is hard for a discrete perceptron. However, this is easy to do with a logistic classifier.

Imagine an image dataset with three labels: “dog”, “cat”, and “bird”. The way to build a clas-
sifier that predicts one of these three labels for every image is to build three classifiers, one for
each one of the labels. When a new image comes in, we evaluate it with each of the three classifi-
ers. The classifier corresponding to each animal returns a probability that the image is the

174	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

corresponding animal. We then classify the image as the animal from the classifier that returned
the highest probability.

This, however, is not the ideal way to do it, because this classifier returns a discrete answer,
such as “dog,” “cat,” or “bird.” What if we wanted a classifier that returns probabilities for the
three animals? Say, an answer could be of the form “10% dog, 85% cat, and 5% bird.” The way we
do this is using the softmax function.

The softmax function works as follows: recall that a logistic classifier makes a prediction using
a two-step process—first it calculates a score, and then it applies the sigmoid function to this
score. Let’s forget about the sigmoid function and output the score instead. Now imagine that the
three classifiers returned the following scores:

•	 Dog classifier: 3

•	 Cat classifier: 2

•	 Bird classifier: –1

How do we turn these scores into probabilities? Well, here’s an idea: we can normalize. This
means dividing all these numbers by their sum, which is five, to get them to add to one. When
we do this, we get the probabilities 3/5 for dog, 2/5 for cat, and –1/5 for bird. This works, but it’s
not ideal, because the probability of the image being a bird is a negative number. Probabilities
must always be positive, so we need to try something different.

What we need is a function that is always positive and that is also increasing. Exponential
functions work great for this. Any exponential function, such as 2x, 3x, or 10x, would do the job.
By default, we use the function ex, which has wonderful mathematical properties (e.g., the deriv-
ative of ex is also ex). We apply this function to the scores, to get the following values:

•	 Dog classifier: e3 = 20.085

•	 Cat classifier: e2 = 7.389

•	 Bird classifier: e–1 = 0.368

Now, we do what we did before—we normalize, or divide by the sum of these numbers for them
to add to one. The sum is 20.085 + 7.389 + 0.368 = 27.842, so we get the following:

•	 Probability of dog: 20.085/27.842 = 0.721

•	 Probability of cat: 7.389/27.842 = 0.265

•	 Probability of bird: 0.368/27.842 = 0.013

These are the three probabilities given by our three classifiers. The function we used was the
softmax, and the general version follows: if we have n classifiers that output the n scores a

1
, a

2
, … ,

a
n
, the probabilities obtained are p

1
, p

2
, … , p

n
, where

1 2
 .

i

n

a

i aa a

e
p

e e e
=

+ + +

	 Exercises� 175

This formula is known as the softmax function.
What would happen if we use the softmax function for only two classes? We obtain the sig-

moid function. Why not convince yourself of this as an exercise?

Summary
•	 Continuous perceptrons, or logistic classifiers, are similar to perceptron classifiers,

except instead of making a discrete prediction such as 0 or 1, they predict any number
between 0 and 1.

•	 Logistic classifiers are more useful than discrete perceptrons, because they give us more
information. Aside from telling us which class the classifier predicts, they also give us a
probability. A good logistic classifier would assign low probabilities to points with label 0
and high probabilities to points with label 1.

•	 The log loss is an error function for logistic classifiers. It is calculated separately for every
point as the negative of the natural logarithm of the probability that the classifier assigns
to its label.

•	 The total log loss of a classifier on a dataset is the sum of the log loss at every point.

•	 The logistic trick takes a labeled data point and a boundary line. If the point is
incorrectly classified, the line is moved closer to the point, and if it is correctly classified,
the line is moved farther from the point. This is more useful than the perceptron trick,
because the perceptron trick doesn’t move the line if the point is correctly classified.

•	 The logistic regression algorithm is used to fit a logistic classifier to a labeled dataset. It
consists of starting with a logistic classifier with random weights and continuously
picking a random point and applying the logistic trick to obtain a slightly better
classifier.

•	 When we have several classes to predict, we can build several linear classifiers and
combine them using the softmax function.

Exercises
Exercise 6.1

A dentist has trained a logistic classifier on a dataset of patients to predict if they have a decayed
tooth. The model has determined that the probability that a patient has a decayed tooth is

s(d + 0.5c – 0.8),

176	 Chapter 6 I A continuous approach to splitting points: Logistic classifiers

where

•	 d is a variable that indicates whether the patient has had another decayed tooth in the
past, and

•	 c is a variable that indicates whether the patient eats candy.

For example, if a patient eats candy, then c = 1, and if they don’t, then c = 0. What is the proba-
bility that a patient that eats candy and was treated for a decayed tooth last year has a decayed
tooth today?

Exercise 6.2

Consider the logistic classifier that assigns to the point (x
1
, x

2
) the prediction ŷ = s(2x

1
 + 3x

2
 – 4),

and the point p = (1, 1) with label 0.

a.	 Calculate the prediction ŷ that the model gives to the point p.

b.	 Calculate the log loss that the model produces at the point p.

c.	 Use the logistic trick to obtain a new model that produces a smaller log loss. You can use
h = 0.1 as the learning rate.

d.	 Find the prediction given by the new model at the point p, and verify that the log loss
obtained is smaller than the original.

Exercise 6.3

Using the model in the statement of exercise 6.2, find a point for which the prediction is 0.8.

hint  First find the score that will give a prediction of 0.8, and recall that the prediction is
ŷ = s(score).

177

In this chapter

•	 types of errors a model can make: false positives and false

negatives

•	 putting these errors in a table: the confusion matrix

•	 what are accuracy, recall, precision, F-score, sensitivity, and

specificity, and how are they used to evaluate models

•	 what is the ROC curve, and how does it keep track of sensitivity

and specificity at the same time

How do you measure classification models?
Accuracy and its friends 7

it says healthy. . . but you

never examined me!

are you just telling

everyone they’re healthy?

how accurate!

i am! and so far I’ve been

correct 99% of the time!

here is your diagnosis.

I’ve developed a cutting

edge covid−19 test!

178	 Chapter 7 I How do you measure classification models? Accuracy and its friends

This chapter is slightly different from the previous two—it doesn’t focus on building classifi-
cation models; instead, it focuses on evaluating them. For a machine learning professional,
being able to evaluate the performance of different models is as important as being able to
train them. We seldom train a single model on a dataset; we train several different models and
select the one that performs best. We also need to make sure models are of good quality before
putting them in production. The quality of a model is not always trivial to measure, and in this
chapter, we learn several techniques to evaluate our classification models. In chapter 4, we
learned how to evaluate regression models, so we can think of this chapter as its analog but
with classification models.

The simplest way to measure the performance of a classification model is by calculating its
accuracy. However, we’ll see that accuracy doesn’t paint the whole picture, because some models
exhibit great accuracy but are not good models anyway. To fix this, we’ll define some useful
metrics, such as precision and recall. Then we’ll combine them into a new, more powerful metric
called the F-score. These metrics are widely used by data scientists to evaluate their models.
However, in other disciplines, such as medicine, other similar metrics are used, such as sensitiv-
ity and specificity. Using these last two metrics, we’ll be able to build a curve called the receiver
operating characteristic (ROC) curve. The ROC curve is a simple plot that gives us great insights
into our models.

Accuracy: How often is my model correct?
In this section, we discuss accuracy, the simplest and most common measure of classification
models. The accuracy of a model is the percentage of times that a model is correct. In other
words, it is the ratio between the number of correctly predicted data points and the total number
of data points. For example, if we evaluate a model on a test dataset of 1,000 samples, and the
model predicted the correct label of the samples 875 times, then this model has an accuracy of
875/1000 = 0.875, or 87.5%.

Accuracy is the most common way to evaluate a classification model, and we should always use
it. However, sometimes accuracy doesn’t fully describe the performance of the model, as we’ll see
shortly. Let’s begin by looking at two examples that we’ll study throughout this chapter.

Two examples of models: Coronavirus and spam email

In this chapter, we use our metrics to evaluate several models on two datasets. The first dataset
is a medical dataset of patients, where some of them have been diagnosed with coronavirus. The
second dataset is a dataset of emails that have been labeled as spam or not spam. As we learned
in chapter 1, spam is the term used for junk email, and ham is the term used for email that is not
spam. In chapter 8, we’ll study a dataset like this in much more detail, when we learn the naive
Bayes algorithm. In this chapter, we aren’t building models. Instead, we use the models as black
boxes and evaluate them based on how many of the data points they predict correctly or incor-
rectly. Both datasets are completely imaginary.

	 How to fix the accuracy problem? Defining different types of errors and how to measure them� 179

Medical dataset: A set of patients diagnosed with coronavirus

Our first dataset is a medical dataset with 1,000 patients. Out of them, 10 have been diagnosed
with coronavirus, and the remaining 990 have been diagnosed as healthy. Thus, the labels in this
dataset are “sick” or “healthy,” corresponding to the diagnosis. The goal of a model would be to
predict the diagnosis based on the features of each patient.

Email dataset: A set of emails labeled spam or ham

Our second dataset is a dataset of 100 emails. Out of them, 40 are spam, and the remaining 60
are ham. The labels in this dataset are “spam” and “ham,” and the goal of a model would be to
predict the label based on the features of the email.

A super effective yet super useless model
Accuracy is a very useful metric, but does it paint the whole picture of the model? It doesn’t, and
we’ll illustrate this with an example. For now, let’s focus on the coronavirus dataset. We’ll come
back to the email dataset in the next section.

Suppose a data scientist tells us the following: “I have developed a test for coronavirus that
takes 10 seconds to run, doesn’t require any examinations, and has an accuracy of 99%!” Should
we be excited or skeptical? We’d probably be skeptical. Why? We’ll soon see that calculating a
model’s accuracy sometimes isn’t enough. Our model may have an accuracy of 99% and yet be
completely useless.

Can we think of a completely useless model that predicts coronavirus in our dataset, yet is
correct 99% of the time? Recall that our dataset contains 1,000 patients, and out of those, 10 have
coronavirus. Feel free to put this book down for a moment and think of how to build a model
that detects coronavirus and that is correct 99% of the time for this dataset.

It could be a model like this: simply diagnose every patient as healthy. That’s a simple model,
but it’s still a model; it’s the model that predicts everything as one class.

What is the accuracy of this model? Well, out of 1,000 tries, it’s incorrect 10 times and correct
990 times. This gives an accuracy of 99%, just like we promised. However, the model equates to
telling everyone that they are healthy in the middle of a global pandemic, which is terrible!

What is the problem with our model, then? The problem is that errors are not created equal,
and some mistakes are much more expensive than others, as we’ll see in the next section.

How to fix the accuracy problem? Defining different
types of errors and how to measure them
In the previous section, we built a useless model that had great accuracy. In this section, we study
what went wrong. Namely, we study what the problem was with calculating accuracy in that
model, and we introduce some slightly different metrics that will give us better evaluations of
this model.

The first thing we need to study is types of errors. In the next section, we see that some errors
are more critical than others. Then in the sections “Storing the correctly and incorrectly classified

180	 Chapter 7 I How do you measure classification models? Accuracy and its friends

points in a table” to “Recall, precision, or F-scores,” we learn different metrics that are more
equipped to catch these critical errors than accuracy.

False positives and false negatives: Which one is worse?
In many cases, the total number of errors doesn’t tell us everything about the model’s performance,
and we need to dig in deeper and identify certain types of errors in different ways. In this section, we
see two types of errors. What are the two types of errors that the coronavirus model can make? It can
diagnose a healthy person as sick or a sick person as healthy. In our model, we label the sick patients
as positive, by convention. The two error types are called false positives and negatives, as follows:

•	 False positive: a healthy person who is incorrectly diagnosed as sick

•	 False negative: a sick person who is incorrectly diagnosed as healthy

In the general setting, a false positive is a data point that has a negative label, but the model falsely
classifies it as positive. A false negative is a data point that has a positive label, but the model
falsely classified it as negative. Naturally, the cases that are correctly diagnosed also have names,
as follows:

•	 True positive: a sick person who is diagnosed as sick

•	 True negative: a healthy person who is diagnosed as healthy

In the general setting, a true positive is a data point that has a positive label that is correctly clas-
sified as positive, and a true negative is one with a negative label that is correctly classified as
negative.

Now, let’s look at the email dataset. Let’s say we have a model that predicts whether each email
is spam or ham. We consider the positives to be the spam emails. Therefore, our two types of
errors follow:

•	 False positive: a ham email that is incorrectly classified as spam

•	 False negative: a spam email that is incorrectly classified as ham

And the correctly classified emails are the following:

•	 True positive: a spam email that is correctly classified as spam

•	 True negative: a ham email that is correctly classified as ham

Figure 7.1 shows a graphical representation of the models, in which the vertical line is the bound-
ary, the zone to the left of the line is the negative zone, and the zone to the right is the positive
zone. The triangles are the points with positive labels, and the circles are the points with negative
labels. The four quantities defined above are the following:

•	 Triangle to the right of the line: true positive

•	 Triangle to the left of the line: false negative

•	 Circle to the right of the line: false positive

•	 Circle to the left of the line: true negative

	 How to fix the accuracy problem? Defining different types of errors and how to measure them� 181

Coronavirus model Spam model
Spam
Ham

Sick
Healthy

False positive:
Healthy person

sent for more tests

False negative:
Sick person
not treated

False negative:
Spam email

sent to inbox

False positive:
Ham email

sent to spam folder

Diagnosed sickDiagnosed healthy Classified spamClassified ham

Figure 7.1  Examples of two models that are widely used in real life and that we’ll use throughout this chapter.
On the left, a coronavirus model where the people are diagnosed as healthy or sick. On the right, a spam-detection
model where the emails are classified as spam or ham. For each model, we have highlighted some of their errors
and separated them as false positives and false negatives.

Notice that both models in figure 7.1 produce the following quantities:

•	 Three true positives

•	 Four true negatives

•	 One false positive

•	 Two false negatives

To see the difference between the coronavirus model and the spam model, we need to analyze
which one is worse between the false positives and the false negatives. Let’s do this for each model
separately.

Analyzing false positives and negatives in the coronavirus model

Let’s stop and think. In the coronavirus model, which one sounds like a worse mistake: a false
positive or a false negative? In other words, what is worse: to incorrectly diagnose a healthy
patient as sick, or a sick patient as healthy? Let’s say that when we diagnose a patient as healthy,
we send them home with no treatment, and that when we diagnose a patient as sick, we send
them for more tests. Incorrectly diagnosing a healthy person may be a small nuisance, because it
means a healthy person will have to stay for extra tests. However, incorrectly diagnosing a sick
person means that a sick person won’t get treatment, their condition may worsen, and they may
potentially infect many others. Thus, in the coronavirus model, a false negative is much worse
than a false positive.

182	 Chapter 7 I How do you measure classification models? Accuracy and its friends

Analyzing false positives and negatives in the spam email model

Now we’ll do the same analysis on the spam model. In this case, let’s say that if our spam classi-
fier classifies an email as spam, then this email is automatically deleted. If it classifies it as ham,
then the email is sent to our inbox. Which one sounds like a worse mistake: a false positive or a
false negative? In other words, what is worse, to incorrectly classify a ham email as spam and
delete it, or to incorrectly classify a spam email as ham and send it to the inbox? I think we can
agree that deleting a good email is much worse than sending a spam email to the inbox. The
occasional spam email in our inbox can be annoying, but a deleted ham email can be a complete
disaster! Imagine the sadness we would feel in our heart if our grandma sent us a very kind email
telling us she baked cookies, and our filter deleted it. Therefore, in the spam email model, a false
positive is much worse than a false negative.

This is where the two models differ. In the coronavirus model, a false negative is worse,
whereas in the spam email model, a false positive is worse. The problem with measuring the
accuracy in any of these two models is that the accuracy considers both types of errors as equally
serious and doesn’t tell them apart.

In the section “A super effective yet super useless model,” we had an example of a model that
diagnosed every patient as healthy. This model made only 10 errors among 1,000 patients.
However, all those 10 were false negatives, which is terrible. If those 10 were false positives instead,
the model would be much better.

In the following sections, we’ll devise two new metrics, similar to accuracy. The first metric
helps us deal with models in which false negatives are worse, and the second one helps us deal
with models in which false positives are worse.

Storing the correctly and incorrectly classified points in a table:
The confusion matrix
In the previous subsection, we learned about false positives, false negatives, true positives, and
true negatives. To keep track of these four entities, we put them together in a table aptly named
the confusion matrix. For binary classification models (models that predict two classes), the con-
fusion matrix has two rows and two columns. In the rows we write the true labels (in the medical
example, this is the condition of the person, sick or healthy), and in the columns we write the
predicted labels (the diagnosis of the person, sick or healthy). The general confusion matrix is
illustrated in table 7.1, and specific ones for examples of models in these two datasets are shown
in tables 7.2 to 7.5. This is called a confusion matrix because it makes it easy to see if the model is
confusing two classes, namely the positive (sick) and the negative (healthy).

Table 7.1  The confusion matrix helps us count how many times each class is predicted
correctly and how many times each class is confused with a different class. In this matrix,
the rows represent the label, and the columns represent the prediction. The elements in the
diagonal are classified correctly, and the elements off the diagonal are not.

Person’s condition Predicted positive Predicted negative

Positive Number of true positives Number of false negatives

Negative Number of false positives Number of true negatives

	 How to fix the accuracy problem? Defining different types of errors and how to measure them� 183

For our existing model (the one that diagnoses every patient as healthy), which from now on we
call coronavirus model 1, the confusion matrix is illustrated in table 7.2.

Table 7.2  The confusion matrix of our coronavirus model helps us dig into our model and
tell the two types of errors apart. This model makes 10 false negative errors (a sick person
diagnosed healthy) and zero false positive errors (a healthy person diagnosed sick). Notice that
the model creates too many false negatives, which are the worst type of error in this case, which
implies that this model is not very good.

Coronavirus model 1 Diagnosed sick (predicted
positive)

Diagnosed healthy (predicted
negative)

Sick (positive) 0 (number of true positives) 10 (number of false negatives)

Healthy (negative) 0 (number of false positives) 990 (number of true negatives)

For problems with more classes, we have a larger confusion matrix. For example, if our model
classifies images into aardvarks, birds, cats, and dogs, then our confusion matrix is a four-by-
four matrix, where along the rows we have the true labels (the type of animal), and along the
columns we have the predicted labels (the type of animal that the model predicted). This confu-
sion matrix also has the property that the correctly classified points are counted in the diagonal,
and the incorrectly classified are counted off the diagonal.

Recall: Among the positive examples, how many did we correctly classify?
Now that we know the two types of errors, in this section, we learn a metric that will give coro-
navirus model 1 a much lower score. We have established that the problem with this model is that
it gives us too many false negatives, namely, that it diagnoses too many sick people as healthy.

Let’s assume, for a moment, that we don’t mind false positives at all. Say that if the model diagnoses
a healthy person as sick, the person may need to take an extra test or quarantine for a little longer, but
this is no problem at all. Naturally, this is not the case; false positives are also expensive, but for now,
let’s pretend that they’re not. In this case, we need a metric that replaces accuracy and that places
importance on finding positive cases and cares less about mistakenly classifying negative cases.

To find this metric, we need to evaluate what our goal is. If we want to cure coronavirus, then
what we really want is the following: out of all the sick people in the world, we want to find them
all. It doesn’t matter if we accidentally find others who aren’t sick, as long as we find all the sick
ones. This is the key. This new metric, called recall, measures precisely that: out of the sick peo-
ple, how many did our model diagnose correctly?

In more general lingo, recall finds the proportion of correct predictions among the data points
with a positive label. This is the number of true positives, divided by the total number of posi-
tives. Coronavirus model 1 has a total of 0 true positives among 10 positives, so its recall is 0/10
= 0. Another way to put it is as the number of true positives divided by the sum of true positives
and false negatives, as shown here:

Recall

True positives

True positives False negatives
=

+

184	 Chapter 7 I How do you measure classification models? Accuracy and its friends

In contrast, let’s say we had a second model called coronavirus model 2. The confusion matrix of
this model is shown in table 7.3. This second model made more mistakes than the first model—it
made 50 total mistakes as opposed to only 10. The accuracy of the second model is 950/1000 =
0.95, or 95%. In terms of accuracy, the second model is not as good as the first model.

However, the second model correctly diagnosed eight out of the 10 sick people and 942 out of
the 1,000 people. In other words, it has two false negatives and 48 false positives.

Table 7.3  The confusion matrix of our second coronavirus model

Coronavirus model 2 Diagnosed sick Diagnosed healthy

Sick 8 (true positives) 2 (false negatives)

Healthy 48 (false positives) 942 (true negatives)

The recall of this model is the number of true positives (eight sick people correctly diagnosed)
divided by the total number of positives (10 sick people), which is 8/10 = 0.8, or 80%. In terms of
recall, the second model is much better. Let’s summarize these calculations for clarity as
follows:

Coronavirus Model 1:

True positives (sick patients diagnosed sick and sent for more tests) = 0

False negatives (sick patients diagnosed healthy and sent home) = 10

Recall = 0/10 = 0%

Coronavirus Model 2:

True positives (sick patients diagnosed sick and sent for more tests) = 8

False negatives (sick patients diagnosed healthy and sent home) = 2

Recall = 8/10 = 80%

Models like the coronavirus model, in which false negatives are much more expensive than false
positives, are high recall models.

Now that we have a better metric, could we fool this metric in the same way we fooled accu-
racy? In other words, can we build a model that has total recall? Well, get ready for a surprise,
because we can. If we build a model that diagnoses every patient as sick, this model has a 100%
recall. However, this model is terrible, too, because although it has zero false negatives, it has too
many false positives to make it a good model. It seems that we still need more metrics to be able
to evaluate our models properly.

	 How to fix the accuracy problem? Defining different types of errors and how to measure them� 185

Precision: Among the examples we classified as positive, how many did we
correctly classify?
In the previous section we learned recall, a metric that measures how well our model did with false
negatives. That metric worked well for the coronavirus model—we’ve seen that this model can’t
afford to have too many false negatives. In this section, we learn about a similar metric, precision,
which measures how well our model does with false positives. We’ll use this metric to evaluate the
spam email model, because this model can’t afford to have too many false positives.

Just as we did with recall, to come up with a metric, we first need to define our goal. We want
a spam filter that doesn’t delete any ham emails. If instead of deleting emails, it sends them to a
spam box. Then we need to look into that spam box and hope that we do not see a single ham
email. Thus, our metric should measure precisely that: Among the emails in our spam box, how
many were actually spam? In other words, out of the emails that are predicted to be spam, how
many of them are actually spam? This is our metric, and we call it precision.

More formally, precision considers only the data points that have been labeled positive, and
among those, how many are true positives. Because the data points that are predicted positive are
the union of the true positives and the false positives, the formula is the following:

Precision

True positives

True positives False positives
=

+

Remember that in our dataset of 100 emails, 40 are spam and 60 are ham. Say we trained the
following two models called spam model 1 and spam model 2. Their confusion matrices are
shown in tables 7.4 and 7.5.

Table 7.4  The confusion matrix of our first spam model

Spam model 1 Predicted spam Predicted ham

Spam 30 (true positives) 10 (false negatives)

Ham 5 (false positives) 55 (true negatives)

Table 7.5  The confusion matrix of our second spam model

Spam model 2 Predicted spam Predicted ham

Spam 35 (true positives) 5 (false negatives)

Ham 10 (false positives) 50 (true negatives)

In terms of accuracy, it seems that both models are just as good—they both make correct predic-
tions 85% of the time (85 correct out of 100 emails). However, at first glance, it seems that the
first model is better than the second one, because the first model deletes only five ham emails,
and the second one deletes 10 of them. Now let’s calculate the precision as follows:

186	 Chapter 7 I How do you measure classification models? Accuracy and its friends

Spam Model 1:

•	 True positives (spam emails deleted) = 30

•	 False positives (ham emails deleted) = 5

•	 Precision = 30/35 = 85.7%

Spam Model 2:

•	 True positives (spam emails deleted) = 35

•	 False positives (ham emails deleted) = 10

•	 Precision = 35/45 = 77.7%

Just as we thought: precision gave a higher score to the first model than to the second model. We
conclude that models like the spam model, in which false positives are much more expensive
than false negatives, are high precision models. And why is the first model better than the second
one? The second model deleted 10 good (ham) emails, but the first model deleted only five of
them. The second model may have cleaned up more spam than the first one, but that doesn’t
make up for the five ham emails it deleted.

Now, in the same way we tricked accuracy and recall, we can also trick precision. Consider the
following spam filter: a spam filter that never detects any spam. What is the precision of this
model? This is complicated, because there are zero spam emails deleted (zero true positives) and
zero ham emails deleted (zero false positives). We won’t attempt to divide zero over zero, because
this book would burst into flames, but by convention, a model that makes no false positive mis-
takes has a precision of 100%. But, of course, a spam filter that does nothing is not a good spam
filter.

This goes to show that no matter how good our metrics are, they can always be fooled. That
doesn’t mean they don’t work. Accuracy, precision, and recall are useful tools in a data scientist’s
toolbox. It is up to us to decide which ones are good for our model, by deciding what errors are
more expensive than others. Always be careful to not fall into the trap of thinking that a model
is good before evaluating it with different metrics.

Combining recall and precision as a way to optimize both: The F-score
In this section, we discuss the F-score, a metric that combines both recall and precision. In the
previous sections, we saw two examples, the coronavirus model and the spam model, in which
either false negatives or false positives were more important. However, in real life, both are
important, even if they are important to different degrees. For example, we may want a model
that doesn’t misdiagnose any sick person but that also doesn’t misdiagnose too many healthy
people, because misdiagnosing a healthy person may involve unnecessary and painful testing, or
even an unnecessary surgery, which could affect their health negatively. In the same way, we may
want a model that doesn’t delete any of our good emails. But to be a good spam filter, it still needs
to catch a lot of spam; otherwise, it’s useless. The F-score has a parameter b accompanying it, so
the more common term is Fb-score. When b = 1, it is called the F

1
-score.

	 How to fix the accuracy problem? Defining different types of errors and how to measure them� 187

Calculating the F-score

Our goal is to find a metric that gives us some number between the recall and the precision. The
first thing that comes to mind is the average between recall and precision. Would this work? It
would, but it’s not the one we pick, for one fundamental reason. A good model is one that has
good recall and good precision. If a model has, say, recall of 50% and precision of 100%, the
average is 75%. This is a good score, but the model may not be, because a recall of 50% is not very
good. We need a metric that behaves like the average but that is closer to the minimum value of
the two.

A quantity that is like the average of two numbers is called the harmonic mean. Whereas the
average of two numbers a and b is (a + b)/2, their harmonic mean is 2ab/(a + b). The harmonic
mean has this property: it is always smaller than or equal to the average. If the numbers a and b
are equal, one can quickly check that their harmonic mean is equal to both of them, just like the
average. But in other cases, the harmonic mean is smaller. Let’s look at an example: If a = 1 and

b = 9, their average is 5. The harmonic mean is 2 1 9
1.8.

1 9

⋅ ⋅
=

+
The F

1
-score is defined as the harmonic mean between the precision and the recall, as

follows:

1

2PR
F

P R
=

+

If both numbers are high, the F
1
-score is high. However, if one of them is low, the F

1
-score will be

low. The purpose of the F
1
-score is to measure if both recall and precision are high and to ring a

bell when one of these two scores is low.

Calculating the Fb-score

In the previous subsection, we learned about the F
1
-score, a score that combines recall and preci-

sion, for the purpose of evaluating a model. However, sometimes we want more recall than preci-
sion, or vice versa. Thus, when we combine the two scores, we may want to give one of them more
weight. This means that sometimes we may want a model that cares both about false positives and
false negatives but assigns more weight to one of them. For example, the coronavirus model cares
much more about false negatives, because people’s lives may depend on a correct identification of
the virus, but it still doesn’t want to create too many false positives, because we may not want to
spend excessive resources retesting healthy people. The spam model cares much more about false
positives, because we really wouldn’t want to delete good emails but still doesn’t want to create too
many false negatives, because we wouldn’t want our inbox cluttered with spam messages.

This is where Fb-score comes into play. The formula for the Fb-score may look complicated at
first, but once we look at it carefully, it does exactly what we want. The Fb-score uses a parameter
called b (the Greek letter beta), which can take any positive value. The point of b is to act as a dial
that we turn to emphasize precision or recall. More specifically, if we slide the b dial to zero, we
get full precision; if we slide it to infinity, we get full recall. In general, the lower the value of b,
the more we emphasize precision, and the higher the value of b, the more we emphasize recall.
The Fb-score is defined as follows (where precision is P and recall is R):

188	 Chapter 7 I How do you measure classification models? Accuracy and its friends

2

2

(1) P R
F

P Rβ
β

β
+

=
+

Let’s analyze this formula carefully by looking at some values for b.

Case 1: b = 1

When b is equal to 1, the Fb-score becomes the following:

()2

1 2

1 1

1

P R
F

P R

+
=

+

This is the same as the F
1
-score that considers recall and precision equally.

Case 2: b = 10

When b is equal to 10, the Fb-score becomes the following:

()2

10 2

1 10

10

P R
F

P R

+
=

+

This can be written as

101
.

100

P R

P R+

This is similar to the F
1
-score, except notice how it gives much more importance to R than to P.

To see this, notice that the limit as b tends to ¥ of the Fb-score is R. Therefore, when we want a
score between recall and precision that gives more weight to recall, we pick a value of b that is
larger than 1. The larger the value, the more emphasis we put on the recall and less on the
precision.

Case 3: b = 0.1

When b is equal to 0.1, the Fb-score becomes the following:

()2

0.1 2

1 0.1

0.1

P R
F

P R

+
=

+

Just like before, we can write this as

1.01
.

0.01

P R

P R+

This is similar to the formula from case 2, except this one gives P a lot more importance. Therefore,
when we want a score between recall and precision that gives more weight to precision, we pick a

	 A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve� 189

value of b that is smaller than 1. The smaller the value, the more emphasis we put on the preci-
sion and less on the recall. In the limits, we say that a value of b = 0 gives us the precision, and a
value of b = ¥ gives us the recall.

Recall, precision, or F-scores: Which one should we use?
Now, how do we put recall and precision into practice? When we have a model, is it a high recall
or a high precision model? Do we use the F-score? If so, which value of b should we pick? The
answers to these questions are up to us, the data scientists. It is important for us to know the
problem we are trying to solve very well to decide which error, between a false positive and a false
negative, is more expensive.

In the previous two examples, we can see that because the coronavirus model needs to focus
more on recall than on precision, we should pick a large value of b, say, for example, 2. In con-
trast, the spam model needs to focus more on precision than on recall, so we should pick a small
value of b, say, 0.5. For more practice analyzing models and estimating what values of b to use,
see exercise 7.4 at the end of the chapter.

A useful tool to evaluate our model: The receiver
operating characteristic (ROC) curve
In the section “How to fix the accuracy problem?,” we learned how to evaluate a model using
metrics such as precision, recall, and the F-score. We also learned that one of the main challenges
of evaluating a model lies in the fact that more than one type of error exists and different types
of errors have different levels of importance. We learned two types of errors: false positives and
false negatives. In some models, false negatives are much more expensive than false positives,
and in some models, it’s the opposite.

In this section, I teach you a useful technique to evaluate a model based on its performance on
false positives and negatives at the same time. Furthermore, this method has an important fea-
ture: a dial that allows us to gradually switch between a model that performs well on false posi-
tives and one that performs well on false negatives. This technique is based on a curve called the
receiver operating characteristic (ROC) curve.

Before we learn the ROC curve, we need to introduce two new metrics called specificity and
sensitivity. Actually, only one of them is new. The other one, we’ve seen before.

Sensitivity and specificity: Two new ways to evaluate our model
In the section “How to fix the accuracy problem?,” we defined recall and precision as our metrics
and found that they were useful tools to measure our model both for false negatives and for false
positives. However, in this section, we use two different, yet very similar, metrics: sensitivity and
specificity. These have a similar use to the previous ones, but they are more useful for us when we
have to build the ROC curve. Furthermore, although precision and recall are more widely used by
data scientists, sensitivity and specificity are more common in the medical field. Sensitivity and
specificity are defined as follows:

190	 Chapter 7 I How do you measure classification models? Accuracy and its friends

Sensitivity (true positive rate): the capacity of the test to identify the positively labeled points.
This is the ratio between the number of true positives and the total number of positives. (Note:
this is the same as recall).

True positives
Sensitivity

True positives False negatives
=

+

Specificity (true negative rate): the capacity of the test to identify the negatively labeled points.
This is the ratio between the number of true negatives and the total number of negatives.

True negatives
Specificity

True negatives False positives
=

+

As I mentioned, sensitivity is the same as recall. However, specificity is not the same as precision (each
nomenclature is popular in different disciplines, and for that reason, we use them both here). We see
this more in detail in the section “Recall is sensitivity, but precision and specificity are different.”

In the coronavirus model, the sensitivity is the proportion of sick people that the model has
correctly diagnosed, among all the sick people. The specificity is the proportion of healthy people
the model has correctly diagnosed, among the healthy people. We are more concerned about
correctly diagnosing sick people, so we need the coronavirus model to have high sensitivity.

In the spam-detection model, the sensitivity is the proportion of spam messages we correctly
deleted, among all the spam messages. The specificity is the proportion of ham emails we cor-
rectly sent to the inbox, among all the ham emails. Because we are more concerned about cor-
rectly detecting the ham emails, we need the spam detection model to have high specificity.

To clarify the previous concepts, let’s look at them in the graphical example we are working
on. Namely, let’s calculate the specificity and sensitivity for our two models in figure 7.2 (which
is the same as figure 7.1).

Coronavirus model Spam model
Spam
Ham

Sick
Healthy

False positive:
Healthy person

sent for more tests

False negative:
Sick person
not treated

False negative:
Spam email

sent to inbox

False positive:
Good email

sent to spam folder

Diagnosed sickDiagnosed healthy Classified spamClassified ham

Figure 7.2  On the left, a coronavirus model where the people are diagnosed as healthy or sick; on the right, a
spam detection model where the emails are classified as spam or ham

	 A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve� 191

As we saw previously, these two models produce the following quantities:

•	 Three true positives

•	 Four true negatives

•	 One false positive

•	 Two false negatives

Now let’s calculate the specificity and sensitivity of these models.

Calculating the specificity

In this case, we calculate sensitivity as follows: among the positive points, how many did the
model classify correctly? This is equivalent to asking: among the triangles, how many are located
to the right of the line? There are five triangles, and the model classified three of them correctly
to the right of the line, so the sensitivity is 3/5, which equals 0.6, or 60%.

Calculating the sensitivity

We calculate specificity as follows: among the negative points, how many did the model classify
correctly? This is equivalent to asking: among the circles, how many are located to the left of the
line? There are five circles, and the model classified four of them correctly to the left of the line,
so the specificity is 4/5, which equals 0.8, or 80%.

The receiver operating characteristic (ROC) curve: A way to optimize sensitivity
and specificity in a model
In this section, we see how to draw the receiver operating characteristic (ROC) curve, which will
give us a lot of information about the model. In short, what we’ll do is slowly modify the model
and record the sensitivity and specificity of the model at each time step.

The first and only assumption we need to make about our model is that it returns the predic-
tion as a continuous value, namely, as a probability. This is true about models such as logistic
classifiers, where the prediction is not a class, such as positive/negative, but a value between 0 and
1, such as 0.7. What we normally do with this value is pick a threshold, such as 0.5, and classify
every point that receives a prediction higher than or equal to the threshold as positive and every
other point as negative. However, this threshold can be any value—it need not be 0.5. Our pro-
cedure consists in varying this threshold from 0 all the way to 1 and recording the sensitivity and
specificity of the model at each threshold value.

Let’s look at an example. We calculate the sensitivity and specificity for three different thresh-
olds: 0.2, 0.5, and 0.8. In figure 7.3, we can see how many points are to the left and right of the
line for each one of these thresholds. Let’s study them in detail. Remember that sensitivity is the
ratio of true positives over all positives, and specificity is the ratio of true negatives over all neg-
atives. Also remember that for each one of these, there are five total positives and five total
negatives.

Threshold = 0.2

Number of true positives: 4

192	 Chapter 7 I How do you measure classification models? Accuracy and its friends

Sensitivity: ⅘

Number of true negatives: 3

Specificity: ⅗

Threshold = 0.5

Number of true positives: 3

Sensitivity: ⅗

Number of true negatives: 4

Specificity: ⅘

Threshold = 0.2

Number of true positives: 2

Sensitivity: ⅖

Number of true negatives: 5

Specificity: ⁵⁄₅ = 1

Note that a low threshold leads to many positive predictions. Therefore, we will have few false
negatives, implying a high sensitivity score, and many false positives, implying a low specificity
score. Similarly, a high threshold implies a low sensitivity score and a high specificity score. As
we move the threshold from low to high, the sensitivity decreases, and the specificity increases.
This is an important point that we’ll touch on later in this chapter, when we get to the point of
deciding the best threshold for our model.

Now we are ready to build the ROC curve. First, we consider a threshold of 0 and slowly increase
the value of this threshold by small intervals, until it reaches 1. For every increment in threshold,
we pass over exactly one point. The values of the thresholds are not important—what is important
is that at every step, we pass over exactly one point (this is possible because all the points give us
different scores, but it’s not a requirement in general). Thus, we’ll refer to the steps as 0, 1, 2,..., 10.
In your head, you should imagine the vertical line in figure 7.3 starting at 0 and moving slowly from
left to right, sweeping one point at a time, until reaching 1. These steps are recorded in table 7.6,
together with the number of true positives and negatives, sensitivity, and specificity at each step.

One thing to notice is that in the first step (step 0), the line is at threshold 0. This means every
point is classified as positive by the model. All the positive points are also classified as positive,

so every positive is a true positive. This means that at timestep 0, the sensitivity is
5

1
5

= . But

because every negative point is classified as positive, there are no true positives, so the specificity

is

0
0

5
= . Similarly, at the last step (step 10), the threshold is 1, and we can check that because

every point is classified as negative, the sensitivity is now 0 and the specificity is 1. For clarity, the
three models in figure 7.3 are highlighted in table 7.6 as timesteps 4, 6, and 8, respectively.

	 A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve� 193

Speci city and sensitivity for di erent thresholdsfi ff
Positive
Negative

0.2

Threshold = 0.5

Sensitivity = 3/5

Specificity = 4/5

Threshold = 0.8

Sensitivity = 2/5

Specificity = 5/5

Threshold = 0.2

Sensitivity = 4/5

Specificity = 3/5

Four true
positives

Three true
negatives

0 1 0.50 1 0.80 1

Three true
positives

Four true
negatives

Two true
positives

Five true
negatives

Figure 7.3  The effects of moving the threshold on the sensitivity and the specificity. On the left, we have a
model with a low threshold; in the middle, we have one with a medium threshold; and on the right, we have
one with a high threshold. For each of the models, there are five positive and five negative points. Each model is
represented by the vertical line. The model predicts that the points to the right of the line are positive and those
to the left are negative. For each of the models, we’ve counted the number of true positives and true negatives,
that is, the number of positive and negative points that have been correctly predicted. We have used those to
calculate the sensitivity and the specificity. Note that as we increase the threshold (i.e., as we move the vertical
line from left to right), the sensitivity goes down and the specificity goes up.

Table 7.6  All the timesteps in the process of increasing our threshold, which is an important
step in building our ROC curve. At each timestep, we record the number of true positives
and true negatives. We then calculate the specificity of the model by dividing the number of
true positives by the total number of positives. As a final step, we calculate the specificity by
dividing the number of true negatives by the total number of negatives.

Step True positives Sensitivity True negatives Specificity

0 5 1 0 0

1 5 1 1 0.2

2 4 0.8 1 0.2

3 4 0.8 2 0.4

4 4 0.8 3 0.6

5 3 0.6 3 0.6

6 3 0.6 4 0.8

7 2 0.4 4 0.8

8 2 0.4 5 1

9 1 0.2 5 1

10 0 0 5 1

194	 Chapter 7 I How do you measure classification models? Accuracy and its friends

As a last step, we plot the sensitivity and specificity values. This is the ROC curve, which we see
in figure 7.4. In this figure, each of the black points corresponds to a timestep (indicated inside
the point), the horizontal coordinate corresponds to the sensitivity, and the vertical coordinate
to the specificity.

ROC curve

Sp
ec

ifi
ci

ty

0.2

0.4

0.6

0.8

1

Sensitivity

0.2 0.4 0.6 0.8 1

1

0

2

3

45

67

10 9 8

Figure 7.4  Here we can see the ROC curve corresponding to our ongoing example, which gives us a great
deal of information on our model. The highlighted dots correspond to the timesteps obtained by moving our
threshold from 0 to 1, and each dot is labeled by the timestep. On the horizontal axis we record the sensitivity of
the model at each timestep, and on the vertical axis we record the specificity.

A metric that tells us how good our model is: The AUC (area under the curve)
As we’ve seen before in this book, evaluating a machine learning model is a highly important
task, and in this section, we discuss how to use the ROC curve to evaluate a model. For this, we’ve
done all the work already—all that is left is to calculate the area under the curve, or AUC. At the
top of figure 7.5, we can see three models, in which the prediction is given by the horizontal axis
(from 0 to 1). On the bottom, you can see the three corresponding ROC curves. Each one of the
squares has size 0.2 times 0.2. The number of squares under each curve are 13, 18, and 25, which
amounts to areas under the curve of 0.52, 0.72, and 1.

Note that the best a model can do is an AUC of 1, which corresponds to the model on the right.
The worst a model can do is an AUC of 0.5, because this means the model is as good as random

	 A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve� 195

guessing. This corresponds to the model on the left. The model in the middle is our original
model, with an AUC of 0.72.

ROC curve

Sp
ec

ifi
ci

ty

0.2

0.4

0.6

0.8

1

Sensitivity

0.2 0.4 0.6 0.8 1

Sp
ec

ifi
ci

ty

0.2

0.4

0.6

0.8

1

Sensitivity

0.2 0.4 0.6 0.8 1

Sp
ec

ifi
ci

ty

0.2

0.4

0.6

0.8

1

Sensitivity

0.2 0.4 0.6 0.8 1

0

AUC = 1

AUC = 0.52

AUC = 0.72

10 10 1

ROC curve ROC curve

Figure 7.5  In this figure, we can see that AUC, or area under the curve, is a good metric to determine how good
a model is. The higher the AUC, the better the model. On the left, we have a bad model with an AUC of 0.52. In the
middle, we have a good model with an AUC of 0.72. On the right, we have a great model with an AUC of 1.

What about a model with an AUC of zero? Well, this is tricky. A model with an AUC of zero
would correspond to a model that classifies every point wrong. Is this a bad model? It’s actually
a very good model, because all we have to do to fix it is to flip all the positive and negative pre-
dictions and get a perfect model. It’s the same effect as having a person that lies every single time
they get a true-or-false question. All we have to do to get them to tell the truth is to flip all their
answers. This means the worst we can have in a binary classification model is an AUC of 0.5,
because this corresponds to a person who lies 50% of the time. They give us no information because
we never know if they are telling the truth or lying! Incidentally, if we have a model with an AUC
less than 0.5, we can f lip the positive and negative predictions and obtain a model with an
AUC larger than 0.5.

How to make decisions using the ROC curve
The ROC is a powerful graphic that gives us a lot of information about our model. In this section,
we learn how we can use it to improve our model. In short, we use the ROC to tweak the thresh-
old in a model and apply it to pick the best model for our use case.

At the beginning of this chapter, we introduced two models, the coronavirus model and the
spam-detection model. These models were very different because, as we saw, the coronavirus
model requires high sensitivity, whereas the spam-detection model requires high specificity.
Every model requires some amount of sensitivity and specificity based on the problem we are to
solve. Let’s say we are in the following situation: we are training a model that is supposed to have
high sensitivity, and we get a model with low sensitivity and high specificity. Is there any way we
can trade off some specificity and gain some sensitivity?

196	 Chapter 7 I How do you measure classification models? Accuracy and its friends

The answer is yes! We can trade off specificity and sensitivity by moving the threshold. Recall
that when we first defined the ROC curve, we noticed that the lower the threshold, the higher
sensitivity and lower specificity in the model, and the higher the threshold, the lower sensitivity
and higher specificity in the model. When the vertical line corresponding to the threshold is at
the very left, every point is predicted to be positive, so all the positives are true positives,
whereas when the vertical line is at the very right, every point is predicted to be negative, so all
the negatives are true negatives. As we move the line to the right, we lose some true positives
and gain some true negatives, thus the sensitivity decreases and the specificity increases. Notice
that as the threshold moves from 0 to 1, we move up and to the left in the ROC curve, as
figure 7.6 illustrates.

0 0.5

Decrease sensitivity
Increase specificity

Decrease sensitivity
Increase specificity

Increase sensitivity
Decrease specificity

Increase sensitivity
Decrease specificity

Sp
ec

ifi
ci

ty

0.2

0.4

0.6

0.8

1

Sensitivity

0.2 0.4 0.6 0.8 1

AUC = 0.72

1

Figure 7.6  The threshold of the model has a lot to do with the sensitivity and the specificity, and this
relationship will help us pick the perfect threshold for our model. On the left, we have our model and, on the
right, the corresponding ROC curve. As we increase or decrease the threshold, we change the sensitivity and
specificity of the model, and this change is illustrated by moving in the ROC curve.

Why does this happen? The threshold tells us where we draw the line on classifying a point. For
example, in the coronavirus model, the threshold tells us where we draw the line on a person
being sent for more tests or sent home. A model with a low threshold is a model that sends people
for extra tests if they so much as show mild symptoms. A model with a high threshold is one that
needs the people to show strong symptoms to send them for more tests. Because we want to catch
all the sick people, we want a low threshold for this model, which means we want a model with
high sensitivity. For clarity, in figure 7.7, we can see the three thresholds used previously, as well
as the points where they correspond in the curve.

If we want our model to have high sensitivity, we just push the threshold to the left (i.e.,
decrease it) until we get to a point in the curve that has as much sensitivity as we want. Note that
the model may lose some specificity, and that’s the price we pay. In contrast, if we want higher
specificity, we push the threshold to the right (i.e., increase it) until we get to a point in the curve
that has as much specificity as we want. Again, we lose some sensitivity during this process. The
curve tells us exactly how much of one we gain and lose, so as data scientists, this is a great tool
to help us decide the best threshold for our model. In figure 7.8, we can see a more general exam-
ple with a bigger dataset.

	 A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve� 197

0.8

Sp
ec

ifi
ci

ty

0.2

0.4

0.6

0.8

1

Sensitivity

0.2 0.4 0.6 0.8 1

Threshold = 0.8
Sensitivity = 2/5 = 0.4
Specificity = 5/5 = 1

Threshold = 0.5
Sensitivity = 3/5 = 0.6
Specificity = 4/5 = 0.8

Threshold = 0.2
Sensitivity = 4/5 = 0.8
Specificity = 3/5 = 0.6

0 1 0.50 1 0.20 1

Figure 7.7  The parallel between the threshold of the model and its ROC. The model on the left has a high
threshold, low sensitivity, and high specificity. The model in the middle has medium values for threshold,
sensitivity, and specificity. The model on the right has a low threshold, high sensitivity, and low specificity.

Sp
ec

ifi
ci

ty

1

Sensitivity

1

High

specificity
(spam-detection model)

High

sensitivity
(coronavirus model)

Happy

medium

Figure 7.8  In this more general scenario, we can see an ROC curve and three points on it corresponding to
three different thresholds. If we want to pick a threshold that gives us high specificity, we pick the one on the
left. For a model with high sensitivity, we pick the one on the right. If we want a model that has a good amount
of both sensitivity and specificity, we pick the one in the middle.

198	 Chapter 7 I How do you measure classification models? Accuracy and its friends

If we need a high sensitivity model, such as the coronavirus model, we would pick the point on
the right. If we need a high specificity model, such as the spam-detection model, we may pick the
point on the left. However, if we want relatively high sensitivity and specificity, we may go for the
point in the middle. It’s our responsibility as data scientists to know the problem well enough to
make this decision properly.

Recall is sensitivity, but precision and specificity are different

At this point you may be wondering how we can remember all these terms off the top of our
head. The answer is, they’re hard not to get confused. Most data scientists (including the author)
often need to quickly look them up in Wikipedia to make sure they’re not confusing them. We
could use a mnemonic to help us remember which one is which.

For example, when we think of recall, think of a car company that made a car with a fatal
design flaw. They need to find all the faulty cars and recall them. If they accidentally get more
cars that are not faulty, they simply return them. However, not finding one of the faulty cars
would be terrible. Thus, recall cares about finding all the positively labeled examples. This rep-
resents a model with high recall.

On the other hand, if we work for this car company, and we went a little overboard and started
recalling all the cars, our boss may come over and say, “Hey, you are sending too many cars to
fix, and we are running out of resources. Can you please be more selective and send me precisely
those that are faulty?” Then we need to add precision to the model and try to find only the ones
that are faulty, even if we accidentally miss some of the faulty ones (hopefully not!). This rep-
resents a model with high precision.

When it comes to specificity and sensitivity, think of an earthquake sensor that beeps every
time there is an earthquake. This sensor is tremendously sensitive. If a butterfly sneezes in the
next house, the sensor beeps. This sensor will capture all the earthquakes for sure, but it will also
capture many other things that are not an earthquake. This represents a model with high
sensitivity.

Now, let’s imagine that this sensor has a dial, and we turn its sensitivity all the way down. Now
the sensor will beep only when there’s a lot of movement. When that sensor beeps, we know it’s
an earthquake. The problem is that it may miss some smaller or medium earthquakes. In other
words, this sensor is very specific to earthquakes, so it will most likely not beep with anything
else. This represents a model with high specificity.

If we go back and read the previous four paragraphs, we may notice the following two things:

•	 Recall and sensitivity are very similar.

•	 Precision and specificity are very similar.

At the very least, recall and sensitivity have the same purpose, which is measuring how many
false negatives there are. Similarly, precision and specificity also have the same purpose, which is
measuring how many false positives there are.

It turns out that recall and sensitivity are exactly the same thing. However, precision and spec-
ificity are not the same thing. Although they don’t measure the same, they both punish models
with a high number of false positives. How to remember all these metrics? A graphical heuristic

	 A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve� 199

can help us remember recall, precision, sensitivity, and specificity. In figure 7.9, we see a confu-
sion matrix with the four quantities: true positives, true negatives, false positives, and false neg-
atives. If we focus on the top row (the positively labeled examples), we can calculate recall by
dividing the number in the left column by the sum of the numbers in both columns. If we focus
on the leftmost column (the examples that are predicted as positive), we can calculate precision
by dividing the number on the top row by the sum of the numbers in both rows. If we focus on
the bottom row (the negatively labeled examples), we can calculate specificity by dividing the
number on the left column by the sum of the numbers on both columns. In other words

•	 Recall and sensitivity correspond to the top row.

•	 Precision corresponds to the left column.

•	 Specificity corresponds to the bottom row.

Predicted

positive

Positive

label

True
positives

Negative

label

Recall (sensitivity) =
TP + FN

TP

Precision =
TP + FP

TP

Specificity =
FP + TN

TN

Predicted

negative

False
negatives

True
negatives

False
positives

Figure 7.9  The top row of the confusion matrix gives us recall and sensitivity: the ratio between the number
of true positives and the sum of true positives and false negatives. The leftmost column gives us precision: the
ratio between the number of true positives and the sum of true positives and false positives. The bottom row
gives us specificity: the ratio between the number of false positives and the sum of false positives and true
negatives.

To wrap up, these quantities are the following in both of our models:

Medical model:

•	 Recall and sensitivity: among the sick people (positives), how many were correctly
diagnosed as sick?

•	 Precision: among the people diagnosed as sick, how many were actually sick?

•	 Specificity: among the healthy people (negatives), how many were correctly diagnosed as
healthy?

200	 Chapter 7 I How do you measure classification models? Accuracy and its friends

Email model:

•	 Recall and sensitivity: among the spam emails (positives), how many were correctly
deleted?

•	 Precision: among the deleted emails, how many were actually spam?

•	 Specificity: among the ham emails (negatives), how many were correctly sent to the
inbox?

Summary
•	 Being able to evaluate a model is as important as being able to train one.

•	 We can use several important metrics to evaluate a model. The ones we learned in this
chapter are accuracy, recall, precision, F-score, specificity, and sensitivity.

•	 Accuracy calculates the ratio between correct predictions and total predictions. It is
useful but can fail in certain cases, especially when the positive and negative labels are
unbalanced.

•	 Errors are divided into two categories: false positives and false negatives.

	– A false positive is a negatively labeled point, which the model incorrectly predicts as
positive.

	– A false negative is a positively labeled point, which the model incorrectly predicts as
negative.

•	 For some models, false negatives and false positives are given different levels of
importance.

•	 Recall and precision are useful metrics to evaluate models, especially when the models
give false negatives and false positives different levels of importance.

	– Recall measures how many of the positive points were correctly predicted by the
model. Recall is low when the model creates many false negatives. For this reason,
recall is a useful metric in models in which we don’t want many false negatives, such
as models for medical diagnosis.

	– Precision measures how many of the points that the model predicted as positive are
actually positive. Precision is low when the model creates many false positives. For
this reason, precision is a useful metric in models in which we don’t want many false
positives, such as spam email models.

•	 F
1
-score is a useful metric that combines recall and precision. It returns a value in

between recall and precision but which is closer to the smaller of the two.

	 Summary� 201

•	 Fb-score is a variation of F
1
-score, in which one can adjust the parameter b to give either

precision or recall a higher importance. Higher values of b give recall more importance,
and lower values of b give precision more importance. Fb-score is particularly useful to
evaluate models in which either precision or recall is more important than the other one,
but we still care about both metrics.

•	 Sensitivity and specificity are two useful metrics that help us evaluate models. They are
highly used in medical fields.

	– Sensitivity, or true positive ratio, measures how many of the positive points were
correctly predicted by the model. Sensitivity is low when the model creates many false
negatives. For this reason, sensitivity is a useful metric to use in medical models
where we don’t want to accidentally leave many healthy patients without treatment.

	– Specificity, or true negative ratio, measures how many of the negative points were
correctly predicted by the model. Specificity is low when the model creates many false
positives. For this reason, specificity is a useful metric in medical models where we
don’t want to accidentally treat or do further invasive tests on patients who are
healthy.

•	 Recall and sensitivity are the exact same thing. However, precision and specificity are not
the same thing. Precision makes sure that most of the predicted positives are truly
positive, and specificity checks that most of the true negatives have been detected.

•	 As we increase the threshold in a model, we decrease its sensitivity and increase its
specificity.

•	 The ROC, or receiver operating characteristic curve, is a useful graph that helps us keep
track of the sensitivity and specificity of the model for each different value of the
threshold.

•	 The ROC also helps us determine how good a model is, using the area under the curve,
or AUC. The closer the AUC is to 1, the better the model. The closer the AUC is to 0.5,
the worse the model.

•	 By looking at the ROC curve, we can make decisions on what threshold to use to give us
good values for both the sensitivity and the specificity, depending on how much of each
our model expects. This makes the ROC curve one of the most popular and useful ways
to evaluate and improve a model.

202	 Chapter 7 I How do you measure classification models? Accuracy and its friends

Exercises
Exercise 7.1

A video site has established that a particular user likes animal videos and absolutely nothing else.
In the next figure, we can see the recommendations that this user got when logging in to the site.

Recommended Not recommended

If this is all the data we have on the model, answer the following questions:

a.	 What is the accuracy of the model?

b.	 What is the recall of the model?

c.	 What is the precision of the model?

d.	 What is the F
1
-score of the model?

e.	 Would you say that this is a good recommendation model?

Exercise 7.2

Find the sensitivity and specificity of the medical model with the following confusion matrix:

Predicted sick Predicted healthy

Sick 120 22

Healthy 63 795

	 Exercises� 203

Exercise 7.3

For the following models, determine which error is worse, a false positive or a false negative.
Based on that, determine which of the two metrics, precision or recall, we should emphasize on
when evaluating each of the models.

1.	 A movie-recommendation system that predicts whether a user will watch a movie

2.	 An image-detection model used in self-driving cars that detects whether an image
contains a pedestrian

3.	 A voice assistant at home that predicts whether the user gave it an order

Exercise 7.4

We are given the following models:

1.	 A self-driving car model for detecting a pedestrian based on the image from the car’s
camera

2.	 A medical model for diagnosing a deadly illness based on the patient’s symptoms

3.	 A recommendation system for movies based on the user’s previous movies watched

4.	 A voice assistant that determines whether the user needs assistance given the voice
command

5.	 A spam-detection model that determines whether an email is spam based on the words in
the email

We are given the task of evaluating these models using Fb-scores. However, we haven’t been given
the values of b to use. What value of b would you use to evaluate each of the models?

205

In this chapter

•	 what is Bayes theorem

•	 dependent and independent events

•	 the prior and posterior probabilities

•	 calculating conditional probabilities based on events

•	 using the naive Bayes model to predict whether an email is spam

or ham, based on the words in the email

•	 coding the naive Bayes algorithm in Python

Using probability to its maximum:
The naive Bayes model

8

your argument is bayes−less.

Why?

i always bring my

rubber duckie to

airplanes.

Because the probability of an

airplane falling is low.

however, the probability of

an airplane falling and

also having a rubber duckie

inside is much lower!

206	 Chapter 8 I Using probability to its maximum: The naive Bayes model

Naive Bayes is an important machine learning model used for classification. The naive Bayes
model is a purely probabilistic model, which means the prediction is a number between 0 and 1,
indicating the probability that a label is positive. The main component of the naive Bayes model
is Bayes’ theorem.

Bayes’ theorem plays a fundamental role in probability and statistics, because it helps calculate
probabilities. It is based on the premise that the more information we gather about an event, the
better estimate of the probability we can make. For example, let’s say we want to find the proba-
bility that it will snow today. If we have no information of where we are and what time of the year
it is, we can only come up with a vague estimate. However, if we are given information, we can
make a better estimate of the probability. Imagine that I tell you that I am thinking of a type of
animal, and I would like you to guess it. What is the probability that the animal I’m thinking of
is a dog? Given that you don’t know any information, the probability is quite small. However, if I
tell you that the animal I’m thinking of is a house pet, the probability increases quite a bit.
However, if I now tell you that the animal I’m thinking of has wings, the probability is now zero.
Each time I tell you a new piece of information, your estimate for the probability that it’s a dog
becomes more and more accurate. Bayes’ theorem is a way to formalize this type of logic and put
it into formulas.

More specifically, Bayes’ theorem answers the question, “What is the probability of Y given
that X occurred?” which is called a conditional probability. As you can imagine, answering this
type of question is useful in machine learning, because if we can answer the question, “What
is the probability that the label is positive given the features?” we have a classification model. For
example, we can build a sentiment analysis model (just like we did in chapter 6) by answering
the question, “What is the probability that this sentence is happy given the words that it con-
tains?” However, when we have too many features (in this case, words), the computation of the
probability using Bayes’ theorem gets very complicated. This is where the naive Bayes algo-
rithm comes to our rescue. The naive Bayes algorithm uses a slick simplification of this calcu-
lation to help us build our desired classification model, called the naive Bayes model. It’s called
naive Bayes because to simplify the calculations, we make a slightly naive assumption that is
not necessarily true. However, this assumption helps us come up with a good estimate of the
probability.

In this chapter, we see Bayes theorem used with some real-life examples. We start by studying
an interesting and slightly surprising medical example. Then we dive deep into the naive Bayes
model by applying it to a common problem in machine learning: spam classification. We finalize
by coding the algorithm in Python and using it to make predictions in a real spam email
dataset.

All the code for this chapter is available at this GitHub repository: https://github.com/
luisguiserrano/manning/tree/master/Chapter_8_Naive_Bayes.

https://github.com/luisguiserrano/manning/tree/master/Chapter_8_Naive_Bayes
https://github.com/luisguiserrano/manning/tree/master/Chapter_8_Naive_Bayes

	 Sick or healthy? A story with Bayes’ theorem as the hero� 207

Sick or healthy? A story with Bayes’ theorem as the hero
Consider the following scenario. Your (slightly hypochondriac) friend calls you, and the follow-
ing conversation unfolds:

You: Hello!

Friend: Hi. I have some terrible news!

You: Oh no, what is it?

Friend: I heard about this terrible and rare disease, and I went to the doctor to be tested for
it. The doctor said she would administer a very accurate test. Then today, she called me and
told me that I tested positive! I must have the disease!

Oh no! What should you say to your friend? First of all, let’s calm him down, and try to figure out
if it is likely that he has the disease.

You: First, let’s calm down. Mistakes happen in medicine. Let’s try to see how likely it is that
you actually have the disease. How accurate did the doctor say the test was?

Friend: She said it was 99% accurate. That means I’m 99% likely to have the disease!

You: Wait, let’s look at all the numbers. How likely is it to have the disease, regardless of the
test? How many people have the disease?

Friend: I was reading online, and it says that on average, one out of every 10,000 people
have the disease.

You: OK, let me get a piece of paper (puts friend on hold).

Let’s stop for a quiz.

quiz  In what range do you think is the probability that your friend has the disease, given
that he has tested positive?

a.	 0–20%

b.	 20–40%

c.	 40–60%

d.	 60–80%

e.	 80–100%

208	 Chapter 8 I Using probability to its maximum: The naive Bayes model

Let’s calculate this probability. To summarize, we have the following two pieces of information:

•	 The test is correct 99% of the time. To be more exact (we checked with the doctor to
confirm this), on average, out of every 100 healthy people, the test correctly diagnoses 99
of them, and out of every 100 sick people, the test correctly diagnoses 99 of them.
Therefore, both on healthy and sick people, the test has an accuracy of 99%.

•	 On average, 1 out of every 10,000 people has the disease.

Let’s do some rough calculations to see what the probability would be. These are summarized in
the confusion matrix shown in figure 8.1. For reference, we can pick a random group of one mil-
lion people. On average, one out of every 10,000 people are sick, so we expect 100 of these people
to have the disease and 999,900 to be healthy.

First, let’s run the test on the 100 sick ones. Because the test is correct 99% of the time, we expect
99 of these 100 people to be correctly diagnosed as sick—that is, 99 sick people who test positive.

Now, let’s run the test on the 999,900 healthy ones. The test makes mistakes 1% of the time, so
we expect 1% of these 999,900 healthy people to be misdiagnosed as sick. That is 9,999 healthy
people who test positive.

This means that the total number of people who tested positive is 99 + 9,999 = 10,098. Out of
these, only 99 are sick. Therefore, the probability that your friend is sick, given that he tested

positive, is
99

0.0098
10,098

= , or 0.98%. That is less than 1%! So we can get back to our friend.

You: Don’t worry, based on the numbers you gave me, the probability that you have the
disease given that you tested positive is less than 1%!

Friend: Oh, my God, really? That’s such a relief, thank you!

You: Don’t thank me, thank math (winks eye).

Let’s summarize our calculation. These are our facts:

•	 Fact 1: Out of every 10,000 people, one has the disease.

•	 Fact 2: Out of every 100 sick people who take the test, 99 test positive, and one tests
negative.

•	 Fact 3: Out of every 100 healthy people who take the test, 99 test negative, and one tests
positive.

We pick a sample population of one million people, which is broken down in figure 8.1, as follows:

•	 According to fact 1, we expect 100 people in our sample population to have the disease,
and 999,900 to be healthy.

•	 According to fact 2, out of the 100 sick people, 99 tested positive and one tested negative.

•	 According to fact 3, out of the 999,900 healthy people, 9,999 tested positive and 989,901
tested negative

	 Sick or healthy? A story with Bayes’ theorem as the hero� 209

Sick

Healthy

Diagnosed

sick

Diagnosed

healthy

989,901
healthy

diagnosed healthy

9,999
healthy

diagnosed sick

99
sick

diagnosed sick

1
sick

diagnosed healthy

Figure 8.1  Among our 1,000,000 patients, only 100 of them are sick (bottom row). Among the 10,098
diagnosed as sick (left column), only 99 of them are actually sick. The remaining 9,999 are healthy, yet were
misdiagnosed as sick. Therefore, if our friend was diagnosed as sick, he has a much higher chance to be among
the 9,999 healthy (top left) than to be among the 99 sick (bottom left).

Because our friend tested positive, he must be in the left column of figure 8.1. This column has
9,999 healthy people who were misdiagnosed as sick and 99 sick people who were correctly diag-

nosed. The probability that your friend is sick is
99

0.0089
9,999

= , which is less than 1%.

This is a bit surprising, if the test is correct 99% of the time, why on earth is it so wrong? Well,
the test is not bad if it’s wrong only 1% of the time. But because one person out of every 10,000 is
sick with the disease, that means a person is sick 0.01% of the time. What is more likely, to be
among the 1% of the population that got misdiagnosed or to be among the 0.01% of the popula-
tion that is sick? The 1%, although a small group, is much larger than the 0.01%. The test has a
problem; it has an error rate much larger than the rate of being sick. We have a similar problem
in the section “Two examples of models: Coronavirus and spam email” in chapter 7—we can’t
rely on accuracy to measure this model.

A way to look at this is using treelike diagrams. In our diagram, we start with a root at the left,
which branches out into two possibilities: that your friend is sick or healthy. Each of these two
possibilities branches out into two more possibilities: that your friend gets diagnosed as healthy
or diagnosed as sick. The tree is illustrated in figure 8.2, together with the count of patients in
each branch.

210	 Chapter 8 I Using probability to its maximum: The naive Bayes model

Your friend is
in one of

these

All patients

Sick

Healthy

Diagnosed
sick

Diagnosed
Healthy

Diagnosed
sick

Diagnosed
healthy

100

999,900

99

1

9,999

989,901

1,000,000

Figure 8.2  The tree of possibilities. Each patient can be sick or healthy. For each of the possibilities, the patient
can be diagnosed as sick or healthy, which gives us four possibilities. We start with one million patients: 100 of
them are sick, and the remaining 999,900 are healthy. Out of the 100 sick, one gets misdiagnosed as healthy, and
the remaining 99 get correctly diagnosed as sick. Out of the 999,900 healthy patients, 9,999 get misdiagnosed as
sick, and the remaining 989,901 are correctly diagnosed as healthy.

From figure 8.2, we can again see that the probability that your friend is sick given that he tested

positive is
99

 0.0098
99 9,999

=
+

, given that he can only be in the first and third groups at the

right.

Prelude to Bayes’ theorem: The prior, the event, and the posterior
We now have all the tools to state Bayes’ theorem. The main goal of Bayes’ theorem is calculating
a probability. At the beginning, with no information in our hands, we can calculate only an ini-
tial probability, which we call the prior. Then, an event happens, which gives us information.
After this information, we have a much better estimate of the probability we want to calculate.
We call this better estimate the posterior. The prior, event, and posterior, are illustrated in fig-
ure 8.3.

prior  The initial probability

event  Something that occurs, which gives us information

posterior  The final (and more accurate) probability that we calculate using the prior
probability and the event

An example follows. Imagine that we want to find out the probability that it will rain today. If we
don’t know anything, we can come up with only a rough estimate for the probability, which is the
prior. If we look around and find out that we are in the Amazon rain forest (the event), then we
can come up with a much more exact estimate. In fact, if we are in the Amazon rain forest, it will
probably rain today. This new estimate is the posterior.

	 Sick or healthy? A story with Bayes’ theorem as the hero� 211

Prior

Probability that the
patient is sick

Posterior

Probability that the
patient is sick given

that they tested positive

Event

The patient
tested

positive.

Figure 8.3  The prior, the event, and the posterior. The prior is the “raw” probability, namely, the probability
we calculate when we know very little. The event is the information that we obtain, which will help us refine our
calculation of the probability. The posterior is the “cooked” probability, or the much more accurate probability
that we calculate when we have more information.

In our ongoing medical example, we need to calculate the probability that a patient is sick. The
prior, the event, and the posterior follow:

•	 Prior: Initially, this probability is 1/10,000, because we don’t have any other information,
other than the fact that one out of every 10,000 patients is sick. This 1/10,000, or 0.0001,
is the prior.

•	 Event: All of a sudden, new information comes to light. In this case, the patient took a
test and tested positive.

•	 Posterior: After coming out positive, we recalculate the probability that the patient is
sick, and that comes out to be 0.0098. This is the posterior.

Bayes’ theorem is one of the most important building blocks of probability and of machine
learning. It is so important that several fields are named after it, such as Bayesian learning,
Bayesian statistics, and Bayesian analysis. In this chapter, we learn Bayes’ theorem and an import-
ant classification model derived from it: the naive Bayes model. In a nutshell, the naive Bayes
model does what most classification models do, which is predict a label out of a set of features.
The model returns the answer in the form of a probability, which is calculated using Bayes’
theorem.

212	 Chapter 8 I Using probability to its maximum: The naive Bayes model

Use case: Spam-detection model
The use case that we study in this chapter is a spam-detection model. This model helps us sepa-
rate spam from ham emails. As we discussed in chapters 1 and 7, spam is the name given to junk
email, and ham is the name given to email that isn’t junk.

The naive Bayes model outputs the probability that an email is spam or ham. In that way, we
can send the emails with the highest probability of being spam directly to the spam folder and
keep the rest in our inbox. This probability should depend on the features of the email, such as
its words, sender, size, and so on. For this chapter, we consider only the words as features. This
example is not that different from the sentiment analysis example we studied in chapters 5 and
6. The key for this sentiment analysis classifier is that each word has a certain probability of
appearing in a spam email. For example, the word lottery is more likely to appear in a spam email
than the word meeting. This probability is the basis of our calculations.

Finding the prior: The probability that any email is spam
What is the probability that an email is spam? That is a hard question, but let’s try to make a rough
estimate, which we call the prior. We look at our current inbox and count how many emails are
spam and ham. Imagine that in 100 emails, 20 are spam and 80 are ham. Thus, 20% of the emails
are spam. If we want to make a decent estimate, we can say that to the best of our knowledge, the
probability that a new email is spam is 0.2. This is the prior probability. The calculation is illus-
trated in figure 8.4, where the spam emails are colored dark gray and the ham emails white.

20 spam 80 ham

Probability of spam: 0.2

Figure 8.4  We have a dataset with 100 emails, 20 of which are spam. An estimate for the probability that an
email is spam is 0.2. This is the prior probability.

	 Use case: Spam-detection model� 213

Finding the posterior: The probability that an email is spam, knowing that it
contains a particular word
Of course, not all emails are created equally. We’d like to come up with a more educated guess
for the probability, using the properties of the email. We can use many properties, such as
sender, size, or words in the email. For this application, we use only the words in the email.
However, I encourage you to go through the example thinking how this could be used with other
properties.

Let’s say that we find a particular word, say, the word lottery, which tends to appear more often
in spam emails than in ham emails. That word represents our event. Among the spam emails, the
word lottery appears in 15 of them, whereas it appears in only 5 of the ham emails. Therefore,
among the 20 emails containing the word lottery, 15 of them are spam, and 5 of them are ham.

Thus, the probability that an email containing the word lottery is spam, is precisely
15

 0.75.
20

=

That is the posterior probability. The process of calculating this probability is illustrated in
figure 8.5.

15 spam emails
containing “lottery”

5 ham emails containing “lottery”

Probability of spam given the word “lottery”: 0.75

Figure 8.5  We have removed (grayed out) the emails that don’t contain the word lottery. All of a sudden, our
probabilities change. Among the emails that contain the word lottery, there are 15 spam emails and 5 ham
emails, so the probability that an email containing the word lottery is spam, is 15

20
 = 0.75.

214	 Chapter 8 I Using probability to its maximum: The naive Bayes model

There we have it: we’ve calculated the probability that an email is spam given that it contains the
word lottery. To summarize:

•	 The prior probability is 0.2. This is the probability that an email is spam, knowing
nothing about the email.

•	 The event is that the email contains the word lottery. This helps us make a better estimate
of the probability.

•	 The posterior probability is 0.75. This is the probability that the email is spam, given that
it contains the word lottery.

In this example, we calculated the probability by counting emails and dividing. This is mostly
done for pedagogical purposes, but in real life, we can use a shortcut to calculate this probability
using a formula. This formula is called Bayes’ theorem, and we see it next.

What the math just happened? Turning ratios into probabilities
One way to visualize the previous example is with a tree of all four possibilities, just as we did with
the medical example in figure 8.2. The possibilities are that the email is spam or ham, and that it
contains the word lottery or not. We draw it in the following way: we start with the root, which
splits into two branches. The top branch corresponds to spam, and the bottom branch corresponds
to ham. Each of the branches splits into two more branches, namely, when the email contains the
word lottery and when it does not. The tree is illustrated in figure 8.6. Notice that in this tree, we’ve
also indicated how many emails out of the total 100 belong to each particular group.

}
}20/100

80/100

15/100

5/100

5/100

75/100

“lottery”

No
“lottery”

“lottery”

No
“lottery”

Spam

Ham

Root
100/100

Spam

Ham

Figure 8.6  The tree of possibilities. The root splits into two branches: spam and ham. Then each of these splits
into two branches: when the email contains the word lottery, and when it doesn’t.

Once we have this tree, and we want to calculate the probability that an email is spam given that
it contains the word lottery, we simply remove all the branches in which the emails don’t contain
the word lottery. This is illustrated in figure 8.7.

	 Use case: Spam-detection model� 215

20/100

80/100

15/100

5/100

Spam and
“lottery”

Root
100/100

Spam

Ham
Ham and
“lottery”

Figure 8.7  From the previous tree, we have removed the two branches where the emails don’t contain the
word lottery. Out of the original 100 emails, we have 20 left that contain lottery. Because of these 20 emails, 15
are spam, we conclude that the probability that an email is spam given that it contains the word lottery is 0.75.

Now, we have 20 emails, and of them, 15 are spam and 5 are ham. Thus, the probability that an

email is spam given that it contains the word lottery is
15

0.75
20

= .

But we’ve already done that, so what is the benefit of the diagram? Aside from making things
simpler, the benefit is that normally, the information we have is based on probabilities, and not
on the number of emails. Many times, we don’t know how many emails are spam or ham. All we
know is the following:

•	 The probability that an email is spam is
1
 0.2
5

= .

•	 The probability that a spam email contains the word lottery is
3

0.75
4

= .

•	 The probability that a ham email contains the word lottery is
1

0.0625
16

= .

•	 Question: What is the probability that an email that contains the word lottery is spam?

First, let’s check if this is enough information. Do we know the probability that an email is ham?

Well, we know that the probability that it is spam is
1

0.2
5

= . The only other possibility is that an

email is ham, so it must be the complement, or
4

0.8
5

= . This is an important rule—the rule of

complementary probabilities.

rule of complementary probabilities  For an event E, the complement of the event E, denoted
Ec, is the event opposite to E. The probability of Ec is 1 minus the probability of E, namely,

() () 1 .cP E P E= −

216	 Chapter 8 I Using probability to its maximum: The naive Bayes model

Therefore, we have the following:

•	 P(spam) =

1
0.2

5
= : the probability of an email being spam

•	 P(ham) =
4

0.8
5

= : the probability of an email being ham

Now let’s look at the other information. The probability that a spam email contains the word

lottery is
3

 0.75
4

= . This can be read as, the probability that an email contains the word lottery

given that it is spam, is 0.75. This is a conditional probability, where the condition is that the
email is spam. We denote condition by a vertical bar, so this can be written as P('lottery' | spam).
The complement of this is P(no 'lottery' | spam), namely, the probability that a spam email does
not contain the word lottery. This probability is 1 – P('lottery' | spam). This way, we can calculate
other probabilities as follows:

•	 P('lottery' | spam) =
3

4
= 0.75: the probability that a spam email contains the word lottery.

•	 P(no 'lottery' | spam) =

1

4

 = 0.25: the probability that a spam email does not contain the

word lottery.

•	 P('lottery' | ham) =

1

16
 = 0.0625: the probability that a ham email contains the word

lottery.

•	 P(no 'lottery' | ham) =

15

16

 = 0.9375: the probability that a ham email does not contain the

word lottery.

The next thing we do is find the probabilities of two events happening at the same time. More
specifically, we want the following four probabilities:

•	 The probability that an email is spam and contains the word lottery

•	 The probability that an email is spam and does not contain the word lottery

•	 The probability that an email is ham and contains the word lottery

•	 The probability that an email is ham and does not contain the word lottery

These events are called intersections of events and denoted with the symbol Ç. Thus, we need to
find the following probabilities:

•	 P('lottery' Ç spam)

•	 P(no 'lottery' Ç spam)

	 Use case: Spam-detection model� 217

•	 P('lottery' Ç ham)

•	 P(no 'lottery' Ç ham)

Let’s look at some numbers. We know that
1

5
, or 20 out of 100, of emails are spam. Out of those

20,
3

4
 of them contain the word lottery. At the end, we multiply these two numbers,

1

5
 times

3

4
, to

obtain
3

20
, which is the same as

15

100
, the proportion of emails that are spam and contain the

word lottery. What we did was the following: we multiplied the probability that an email is spam
times the probability that a spam email contains the word lottery, to obtain the probability that
an email is spam and contains the word lottery. The probability that a spam email contains the
word lottery is precisely the conditional probability, or the probability that an email contains
the word lottery given that it is a spam email. This gives rise to the multiplication rule for
probabilities.

Product rule of probabilities  For events E and F, the probability of their intersection is
the product of the conditional probability of F given E, times the probability of F, namely,
P(E Ç F) = P(E | F) Ç P(F).

Now we can calculate these probabilities as follows:

•	 P('lottery' Ç spam) = P('lottery' | spam) Ç P(spam) =
3

4
 ·

1

5
 =

3

20
 = 0.15

•	 P(no 'lottery' Ç spam) = P(no 'lottery' | spam) Ç P(spam) =

1

4

 ·
1

5
 =

1

20
 = 0.05

•	 P(no 'lottery' Ç ham) = P(no 'lottery' | ham) Ç P(ham) =
1

16
·

4
0.8

5
= =

1

20
 = 0.05

•	 P(no 'lottery' Ç ham) = P(no 'lottery' | ham) · P(ham) =
15

16

·
4

0.8
5

= =
15

20
 = 0.75

These probabilities are summarized in figure 8.8. Notice that the product of the probabilities on
the edges are the probabilities at the right. Furthermore, notice that the sum of all these four
probabilities is one, because they encompass all the possible scenarios.

218	 Chapter 8 I Using probability to its maximum: The naive Bayes model

}
}3/4

1/4

“lottery”

No
“lottery”

“lottery”

No
“lottery”

Spam

Ham

Root

Spam

Ham
1/16

15/16

3/20

1/20

1/20

15/20

1/5

4/5

Figure 8.8  The same tree from figure 8.6, but now with probabilities. From the root, two branches emerge,
one for spam emails and one for ham emails. In each one, we record the corresponding probability. Each branch
again splits into two leaves: one for emails containing the word lottery, and one for emails not containing it.
In each branch we record the corresponding probability. Notice that the product of these probabilities is the
probability at the right of each leaf. For example, for the top leaf, 1/5 · 3/4 = 3/20 = 0.15.

We’re almost done. We want to find P(spam | 'lottery'), which is the probability that an email is
spam given that it contains the word lottery. Among the four events we just studied, in only two
of them does the word lottery appear. Thus, we need to consider only those, namely:

•	 P('lottery' Ç spam) =

3

20
 = 0.15

•	 P('lottery' Ç ham) =
1

20
 = 0.05

In other words, we need to consider only the two branches shown in figure 8.9— the first and the
third, namely, those in which the email contains the word lottery.

}3/4
“lottery”

“lottery”

Spam

Ham
Root

Spam

Ham
1/16

3/20

1/20

1/5

4/5 }
Figure 8.9  From the tree in figure 8.8, we have removed the two branches where the emails don’t contain the
word lottery.

	 Use case: Spam-detection model� 219

The first one is the probability that an email is spam, and the second one is the probability that
the email is ham. These two probabilities don’t add to one. However, because we now live in a
world in which the email contains the word lottery, then these two are the only possible scenar-
ios. Thus, their probabilities should add to 1. Furthermore, they should still have the same rela-
tive ratio with respect to each other. The way to fix this is to normalize—to find two numbers

that are in the same relative ratio with respect to each other as

3

20
 and

1

20
 but that add to one.

The way to find these is to divide both by the sum. In this case, the numbers become
3 / 20

3 / 20 1 / 20+

and
1/ 20

3 / 20 1 / 20+
. These simplify to

3

4
 and

1

4

, which are the desired probabilities. Thus, we con-

clude the following:

•	 P(spam | 'lottery') =
3

4
 = 0.75

•	 P(ham | 'lottery') =
1

4

 = 0.25

This is exactly what we figured out when we counted the emails. To wrap up this information,
we need a formula. We had two probabilities: the probability that an email is spam and contains
the word lottery, and the probability that an email is spam and does not contain the word lottery.
To get them to add to one, we normalized them. This is the same thing as dividing each one of
them by their sum. In math terms, we did the following:

()
() ()

(|)

P lottery spam
P spam lottery

P lottery spam P lottery ham

∩′ ′
=′ ′

∩ + ∩′ ′ ′ ′

If we remember what these two probabilities were, using the product rule, we get the following:

()
() ()

(|)
(|)

(|) (|)

P lottery spam P spam
P spam lottery

P lottery spam P spam P lottery ham P ham

⋅′ ′
=′ ′

⋅ + ⋅′ ′ ′ ′

To verify, we plug in the numbers to get:

1 3 3 3
35 4 20 20(|) 0.75

1 3 4 1 3 1 4 4
5 4 5 16 20 20 20

P spam lottery
⋅

= = = = =′ ′
⋅ + ⋅ +

This is the formula for Bayes’ theorem! More formally:

220	 Chapter 8 I Using probability to its maximum: The naive Bayes model

Bayes theorem  For events E and F,

()
()

(|)
(|) .

P F E P E
P E F

P F

⋅
=

Because the event F can be broken down into the two disjoint events F|E and F|Ec, then

()
() ()
(|)

(|) .
(|) (|) c c

P F E P E
P E F

P F E P E P F E P E

⋅
=

⋅ + ⋅

What about two words? The naive Bayes algorithm
In the previous section we calculated the probability that an email is spam given that it contains
the keyword lottery. However, the dictionary contains many more words, and we’d like to calcu-
late the probability that an email is spam given that it contains several words. As you can imag-
ine, the calculations get more complicated, but in this section, we learn a trick that helps us
estimate this probability.

In general, the trick helps us calculate a posterior probability based on two events instead of
one (and it easily generalizes to more than two events). It is based on the premise that when
events are independent, the probability of both occurring at the same time is the product of their
probabilities. Events are not always independent, but assuming they are sometimes helps us
make good approximations. For example, imagine the following scenario: there is an island with
1,000 people. Half of the inhabitants (500) are women, and one-tenth of the inhabitants (100)
have brown eyes. How many of the inhabitants do you think are women with brown eyes? If all
we know is this information, we can’t find out unless we count them in person. However, if we
assume that gender and eye color are independent, then we can estimate that half of one tenth of

the population consists of women with brown eyes. That is
1 1 1

2 10 20

⋅ = of the population. Because

the total population is 1,000 people, our estimate for the number of women with brown eyes is
1

1000 50
20

⋅ = people. Maybe we go to the island and find out that that’s not the case, but to the

best of our knowledge, 50 is a good estimate. One may say that our assumption about the indepen-
dence of gender and eye color was naive, and maybe it was, but it was the best estimate we could
come up with given the information we had.

The rule we used in the previous example is the product rule for independent probabilities,
which states the following:

product rule for independent probabilities  If two events E and F are independent,
namely, the occurrence of one doesn’t influence in any way the occurrence of the other one,
then the probability of both happening (the intersection of the events) is the product of the
probabilities of each of the events. In other words,

P(E Ç F) = P(E) · P(F).

	 Use case: Spam-detection model� 221

Back to the email example. After we figured out the probability that an email is spam given that
it contains the word lottery, we noticed that another word, sale, also tends to appear a lot in spam
email. We’d like to figure out the probability that an email is spam given that it contains both
lottery and sale. We begin by counting how many spam and ham emails contain the word sale
and find that it appears in 6 of the 20 spam emails and 4 of the 80 ham emails. Thus, the proba-
bilities are the following (illustrated in figure 8.10):

•	 P('sale' | spam) =
6

20
 = 0.3

•	 P('sale' | ham) =
4

80
 = 0.05

6 spam emails
containing “sale”

4 ham emails containing “sale”

Probability of spam given the word “sale”: 0.6

Figure 8.10  In a similar calculation as for the word lottery, we look at the emails containing the word sale.
Among these (not grayed-out) emails, there are six spam and four ham.

One can use Bayes’ theorem again to conclude that the probability that an email is spam given
that it contains the word sale is 0.6, and I encourage you to go through the calculations yourself.
However, the more important question is: what is the probability that an email is spam given that
it contains the words lottery and sale at the same time? Before we do this, let’s find the probability

222	 Chapter 8 I Using probability to its maximum: The naive Bayes model

that an email contains the words lottery and sale given that it is spam. This should be easy: we go
through all our emails and find how many of the spam emails have the words lottery and sale.

However, we may run into the problem that there are no emails with the words lottery and
sale. We have only 100 emails, and when we are trying to find two words on them, we may not
have enough to be able to properly estimate a probability. What can we do? One possible solution
is to collect more data, until we have so many emails that it’s likely that the two words appear in
some of them. However, the case may be that we can’t collect any more data, so we have to work
with what we have. This is where the naive assumption will help us.

Let’s try to estimate this probability in the same way that we estimated the number of women
with brown eyes on the island at the beginning of this section. We know that the probability that
the word lottery appears in a spam email is 0.75, from the previous section. From earlier in this
section, the probability that sale appears in a spam email is 0.6. Thus, if we naively assume that
the appearances of these two words are independent, the probability that both words appear in a
spam email is 0.75 · 0.3 = 0.225. In a similar fashion, because we calculated that the probabilities
of a ham email containing the word lottery is 0.0625 and containing the word sale is 0.05, then
the probability of a ham email containing both is 0.0625 · 0.05 = 0.003125. In other words, we’ve
done the following estimations:

•	 P('lottery', 'sale' | spam) = P('lottery' | spam) P('sale' | spam) = 0.75 · 0.3 = 0.225

•	 P('lottery' , 'sale' | ham) = P('lottery' | ham) P('sale' | ham) = 0.0625 · 0.05 = 0.003125

The naive assumption we’ve made follows:

naive assumption  The words appearing in an email are completely independent of each
other. In other words, the appearance of a particular word in an email in no way affects the
appearance of another one.

Most likely, the naive assumption is not true. The appearance of one word can sometimes heavily
influence the appearance of another. For example, if an email contains the word salt, then the
word pepper is more likely to appear in this email, because many times they go together. This is
why our assumption is naive. However, it turns out that this assumption works well in practice,
and it simplifies our math a lot. It is called the product rule for probabilities and is illustrated in
figure 8.11.

Now that we have estimates for the probabilities, we proceed to find the expected number of
spam and ham emails that contain the words lottery and sale.

•	 Because there are 20 spam emails, and the probability that a spam email contains both words
is 0.45, the expected number of spam emails containing both words is 20 · 0.225 = 4.5.

•	 Similarly, there are 80 ham emails, and the probability that a ham email contains both
words is 0.00325, so the expected number of ham emails containing both words is
80 · 0.00325 = 0.25.

	 Use case: Spam-detection model� 223

“Sale”

No “Sale”

“Lottery” No “Lottery”

10%

20%

90%

80%

“Sale” and

“Lottery”

2%

Figure 8.11  Say 20% of the emails contain the word lottery, and 10% of the emails contain the word sale. We
make the naive assumption that these two words are independent of each other. Under this assumption, the
percentage of emails that contain both words can be estimated as 2%, namely, the product of 20% and 10%.

The previous calculations imply that if we restrict our dataset to only emails that contain both
the words lottery and sale, we expect 4.5 of them to be spam and 0.25 to be ham. Thus, if we were
to pick one at random among these, what is the probability that we pick one that is spam? This
may look harder with nonintegers than with integers, but if we look at figure 8.12, this may be
more clear. We have 4.5 spam emails and 0.25 ham emails (this is exactly one-fourth of an email).
If we throw a dart and it falls in one of the emails, what’s the probability that it landed on a spam
email? Well, the total number of emails (or the total area, if you’d like to imagine it that way) is
4.5 + 0.25 = 4.75. Because 4.5 are spam, the probability that the dart landed on spam is 4.5/4.75
= 0.9474. This means that an email with the words lottery and sale has a 94.74% probability of
being spam. That is quite high!

4.5 spam emails
containing “lottery” and “sale”

0.25 ham emails
containing “lottery” and “sale”

Figure 8.12  We have 4.5 spam emails and 0.25 ham emails. We throw a dart, and it hits one of the emails. What
is the probability that it hit a spam email? The answer is 94.74%.

224	 Chapter 8 I Using probability to its maximum: The naive Bayes model

What we did here, using probability, was employing Bayes’ theorem, except with the events

•	 E = lottery Ç sale

•	 F = spam

to get the formula

()
() ()

(|)
(|) .

(|) (|)

P lottery sale spam P spam
P spam lottery sale

P lottery sale spam P spam P lottery sale ham P ham

∩ ⋅
∩ =

∩ ⋅ + ∩ ⋅

Then we (naively) assumed that the appearances of the words lottery and sale were independent
among spam (and ham) emails, to get the following two formulas:

 P(lottery Ç sale | spam) = P(lottery | spam) · P(sale | spam)

P(lottery Ç sale | ham) = P(lottery | ham) · P(sale | ham)

Plugging them into the previous formula, we get

(|) P spam lottery sale∩

()
() ()

(|) (|)

(|) (|) (|) (|)

P lottery spam P sale spam P spam

P lottery spam P sale spam P spam P lottery ham P sale ham P ham

⋅ ⋅
=

⋅ ⋅ + ⋅ ⋅
.

Finally, plugging in the following values:

•	 P(lottery | spam) =
3

4

•	 P(sale | spam) =
3

10

•	 P(spam) =
1

5

•	 P(lottery | ham) =
1

16

•	 P(sale | ham) =
1

20

•	 P(ham) =
4

0.8
5

=

we get

	 Use case: Spam-detection model� 225

3 3 1

4 10 5(|) 0.9474
3 3 1 1 1 4

4 10 5 16 20 5

P spam lottery sale
⋅ ⋅

∩ = =
⋅ ⋅ + ⋅ ⋅

.

What about more than two words?
In the general case, the email has n words x

1
, x

2
, … , x

n
. Bayes’ theorem states that the probability

of an email being spam given that it contains the words x
1
, x

2
, … , x

n
 is

() ()
() ()

1 2
1 2

1 2 1 2

(, , , |)
 | , , , .

(, , , |) (, , , |)
n

n

n n

P x x x spam P spam
P spam x x x

P x x x spam P spam P x x x ham P ham

…
… =

… + …

In the previous equation we removed the intersection sign and replaced it with a comma. The
naive assumption is that the appearances of all these words are independent. Therefore,

P(x
1
, x

2
, … , x

n
 | spam) = P(x

1
 | spam) P(x

2
 | spam) … P(x

n
 | spam)

and

P(x
1
, x

2
, … , x

n
 | ham) = P(x

1
 | ham) P(x

2
 | ham) … P(x

n
 | ham).

Putting together the last three equations, we get

()1 2| , , , nP spam x x x…

()
() ()

1 2

1 2 1 2

(|) (|)... (|)
 .

(|) (|)... (|) (|) (|)... (|)
n

n n

P x spam P x spam P x spam P spam

P x spam P x spam P x spam P spam P x ham P x ham P x ham P ham
=

+

Each of these quantities on the right-hand side is easy to estimate as a ratio between numbers of
emails. For example, P(x

i
 | spam) is the ratio between the number of spam emails that contain the

word x
i
 and the total number of spam emails.

As a small example, let’s say that the email contains the words lottery, sale, and mom. We
examine the word mom and notice that it occurs in only one out of the 20 spam emails and in 10

out of the 80 ham emails. Therefore, P('mom' | spam) =

1

20
 and P('mom' | ham) =

1

8
. Using the

same probabilities for the words lottery and sale as in the previous section, we get the following:

P(spam | 'lottery', 'sale', 'mom')

()
() ()

(|) (|) (|)

(|) (|) (|) (|) (|) (|)

P lottery spam P sale spam P mom spam P spam

P lottery spam P sale spam P mom spam P spam P lottery ham P sale ham P mom ham P ham

′ ′ ′ ′ ′ ′
=

+′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

226	 Chapter 8 I Using probability to its maximum: The naive Bayes model

3 3 1 1

4 10 20 5
3 3 1 1 1 1 1 4

4 10 20 5 16 20 8 5

⋅ ⋅ ⋅
=

⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

 = 0.8780

Notice that adding the word mom into the equation reduced the probability of spam from 94.74%
to 87.80%, which makes sense, because this word is more likely to appear in ham emails than in
spam emails.

Building a spam-detection model with real data
Now that we have developed the algorithm, let’s roll up our sleeves and code the naive Bayes
algorithm. Several packages such as Scikit-Learn have great implementations of this algorithm,
and I encourage you to look at them. However, we’ll code it by hand. The dataset we use is from
Kaggle, and for a link to download it, please check the resources for this chapter in appendix C.
Here is the code for this section:

•	 Notebook: Coding_naive_Bayes.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_8_Naive_Bayes/
Coding_naive_Bayes.ipynb

•	 Dataset: emails.csv

For this example, we’ll introduce a useful package for handling large datasets called Pandas (to
learn more about it, please check out the section “Using Pandas to load the dataset” in chapter 13).
The main object used to store datasets in pandas is the DataFrame. To load our data into a Pandas
DataFrame, we use the following command:

import pandas
emails = pandas.read_csv('emails.csv')

In table 8.1, you can see the first five rows of the dataset.
This dataset has two columns. The first column is the text of the email (together with its sub-

ject line), in string format. The second column tells us if the email is spam (1) or ham (0). First
we need to do some data preprocessing.

https://github.com/luisguiserrano/manning/blob/master/Chapter_8_Naive_Bayes/Coding_naive_Bayes.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_8_Naive_Bayes/Coding_naive_Bayes.ipynb

	 Building a spam-detection model with real data� 227

Table 8.1  The first five rows of our email dataset. The Text column shows the text in each
email, and the Spam column shows a 1 if the email is spam and a 0 if the email is ham. Notice
that the first five emails are all spam.

Text Spam

Subject: naturally irresistible your corporate... 1

Subject: the stock trading gunslinger fanny i... 1

Subject: unbelievable new homes made easy im ... 1

Subject: 4 color printing special request add... 1

Subject: do not have money, get software cds ... 1

Data preprocessing
Let’s start by turning the text string into a list of words. We do this using the following function,
which uses the lower() function to turn all the words into lowercase and the split() function
to turn the words into a list. We check only whether each word appears in the email, regardless
of how many times it appears, so we turn it into a set and then into a list.

def process_email(text):
 text = text.lower()
 return list(set(text.split()))

Now we use the apply() function to apply this change to the entire column. We call the new
column emails['words'].

emails['words'] = emails['text'].apply(process_email)

The first five rows of the modified email dataset are shown in table 8.2.

Table 8.2  The email dataset with a new column called Words, which contains a list of the
words in the email (without repetition) and subject line

Text Spam Words

Subject: naturally irresistible your corporate... 1 [letsyou, all, do, but, list, is, information,...

Subject: the stock trading gunslinger fanny i... 1 [not, like, duane, trading, libretto,
attainde...

Subject: unbelievable new homes made
easy im ... 1 [im, have, $, take, foward, all, limited, subj...

Subject: 4 color printing special request add... 1 [color, azusa, pdf, printable, 8102,
subject:,...

Subject: do not have money, get software cds
... 1 [get, not, have, all, do, subject:, be, by, me...

228	 Chapter 8 I Using probability to its maximum: The naive Bayes model

Finding the priors
Let’s first find the probability that an email is spam (the prior). For this, we calculate the number
of emails that are spam and divide it by the total number of emails. Notice that the number of
emails that are spam is the sum of entries in the Spam column. The following line will do the job:

sum(emails['spam'])/len(emails)
0.2388268156424581

We deduce that the prior probability that the email is spam is around 0.24. This is the probability
that an email is spam if we don’t know anything about the email. Likewise, the prior probability
that an email is ham is around 0.76.

Finding the posteriors with Bayes’ theorem
We need to find the probabilities that spam (and ham) emails contain a certain word. We do this
for all words at the same time. The following function creates a dictionary called model, which
records each word, together with the number of appearances of the word in spam emails and in
ham emails:

model = {}

for index, email in emails.iterrows():
 for word in email['words']:
 if word not in model:
 model[word] = {'spam': 1, 'ham': 1}
 if word in model:
 if email['spam']:
 model[word]['spam'] += 1
 else:
 model[word]['ham'] += 1

Note that the counts are initialized at 1, so in reality, we are recording one more appearance of
the email as spam and ham. We use this small hack to avoid having zero counts, because we don’t
want to accidentally divide by zero. Now let’s examine some rows of the dictionary as follows:

model['lottery']
{'ham': 1, 'spam': 9}

model['sale']
{'ham': 42, 'spam': 39}

This means that the word lottery appears in 1 ham email and 9 spam emails, whereas the word
sale appears in 42 ham emails and 39 spam emails. Although this dictionary doesn’t contain any
probabilities, these can be deduced by dividing the first entry by the sum of both entries. Thus,

if an email contains the word lottery, the probability of it being spam is
9

9 1+
 = 0.9, and if it con-

tains the word sale, the probability of it being spam is
39

39 42+
 = 0.48.

Building a spam-detection model with real data� 229

Implementing the naive Bayes algorithm
The input of the algorithm is the email. It goes through all the words in the email, and for each
word, it calculates the probabilities that a spam email contains it and that a ham email contains
it. These probabilities are calculated using the dictionary we defined in the previous section.
Then we multiply these probabilities (the naive assumption) and apply Bayes’ theorem to find the
probability that an email is spam given that it contains the words on this particular email. The
code to make a prediction using this model follows:

def predict_naive_bayes(email):
 total = len(emails)	

Calculates the total number of emails,
spam emails, and ham emails

 num_spam = sum(emails['spam'])
 num_ham = total - num_spam
 email = email.lower()	

Processes each email by turning it
into a list of its words in lowercase

 words = set(email.split())
 spams = [1.0]
 hams = [1.0]
 for word in words:

if word in model:

For each word, computes the conditional
probability that an email containing that
word is spam (or ham), as a ratio

spams.append(model[word]['spam']/num_spam*total)
hams.append(model[word]['ham']/num_ham*total)

 prod_spams = np.long(np.prod(spams)*num_spam)

Multiplies all the previous
probabilities times the prior
probability of the email being spam,
and calls this prod_spams. Does a
similar process for prod_hams.

 prod_hams = np.long(np.prod(hams)*num_ham)
 return prod_spams/(prod_spams + prod_hams)

Normalizes these two probabilities to
get them to add to one (using Bayes’
theorem) and returns the result

You may note that in the previous code, we used another small hack. Every probability is multi-
plied by the total number of emails in the dataset. This won’t affect our calculations because this
factor appears in the numerator and the denominator. However, it does ensure that our products
of probabilities are not too small for Python to handle.

Now that we have built the model, let’s test it by making predictions on some emails as
follows:

predict_naive_bayes('Hi mom how are you')
0.12554358867163865

predict_naive_bayes('meet me at the lobby of the hotel at nine am')
0.00006964603508395

predict_naive_bayes('buy cheap lottery easy money now')
0.9999734722659664

predict_naive_bayes('asdfgh')
0.2388268156424581

230	 Chapter 8 I Using probability to its maximum: The naive Bayes model

It seems to work well. Emails like ‘hi mom how are you’ get a low probability (about 0.12) of being
spam, and emails like ‘buy cheap lottery easy money now’ get a very high probability (over 0.99)
of being spam. Notice that the last email, which doesn’t contain any of the words in the dictio-
nary, gets a probability of 0.2388, which is precisely the prior.

Further work
This was a quick implementation of the naive Bayes algorithm. But for larger datasets, and larger
emails, we should use a package. Packages like Scikit-Learn offer great implementations of the
naive Bayes algorithm, with many parameters to play with. Explore this and other packages, and
use the naive Bayes algorithm on all types of datasets!

Summary
•	 Bayes’ theorem is a technique widely used in probability, statistics, and machine learning.

•	 Bayes’ theorem consists of calculating a posterior probability, based on a prior probability
and an event.

•	 The prior probability is a basic calculation of a probability, given very little information.

•	 Bayes’ theorem uses the event to make a much better estimate of the probability in
question.

•	 The naive Bayes algorithm is used when one wants to combine a prior probability
together with several events.

•	 The word naive comes from the fact that we are making a naive assumption, namely, that
the events in question are all independent.

Exercises
Exercise 8.1

For each pair of events A and B, determine if they are independent or dependent. For (a) to (d),
provide mathematical justification. For (e) and (f) provide verbal justification.

Throwing three fair coins:

a.	 A: First one falls on heads. B: Third one falls on tails.

b.	 A: First one falls on heads. B: There is an odd number of heads among the three throws.

Rolling two dice:

c.	 A: First one shows a 1. B: Second one shows a 2.

d.	 A: First one shows a 3. B: Second one shows a higher value than the first one.

	 Exercises� 231

For the following, provide a verbal justification. Assume that for this problem, we live in a place
with seasons.

e.	 A: It’s raining outside. B: It’s Monday.

f.	 A: It’s raining outside. B: It’s June.

Exercise 8.2

There is an office where we have to go regularly for some paperwork. This office has two clerks,
Aisha and Beto. We know that Aisha works there three days a week, and Beto works the other
two. However, the schedules change every week, so we never know which three days Aisha is
there, and which two days Beto is there.

a.	 If we show up on a random day to the office, what is the probability that Aisha is the
clerk?

We look from outside and notice that the clerk is wearing a red sweater, although we can’t tell
who the clerk is. We’ve been going to that office a lot, so we know that Beto tends to wear red
more often than Aisha. In fact, Aisha wears red one day out of three (one-third of the time), and
Beto wears red one day out of two (half of the time).

b.	 What is the probability that Aisha is the clerk, knowing that the clerk is wearing red
today?

Exercise 8.3

The following is a dataset of patients who have tested positive or negative for COVID-19. Their
symptoms are cough (C), fever (F), difficulty breathing (B), and tiredness (T).

Cough (C) Fever (F) Difficulty
breathing (B) Tiredness (T) Diagnosis

Patient 1 X X X Sick

Patient 2 X X X Sick

Patient 3 X X X Sick

Patient 4 X X X Sick

Patient 5 X X Healthy

Patient 6 X X Healthy

Patient 7 X Healthy

Patient 8 X Healthy

The goal of this exercise is to build a naive Bayes model that predicts the diagnosis from the
symptoms. Use the naive Bayes algorithm to find the following probabilities:

232	 Chapter 8 I Using probability to its maximum: The naive Bayes model

note  For the following questions, the symptoms that are not mentioned are completely
unknown to us. For example, if we know that the patient has a cough, but nothing is said
about their fever, it does not mean the patient doesn’t have a fever.

a.	 The probability that a patient is sick given that the patient has a cough

b.	 The probability that a patient is sick given that the patient is not tired

c.	 The probability that a patient is sick given that the patient has a cough and a fever

d.	 The probability that a patient is sick given that the patient has a cough and a fever, but no
difficulty breathing

233

In this chapter

•	 what is a decision tree

•	 using decision trees for classification and regression

•	 building an app-recommendation system using users’ information

•	 accuracy, Gini index, and entropy, and their role in building

decision trees

•	 using Scikit-Learn to train a decision tree on a university admissions

dataset

Splitting data by asking questions:
Decision trees

9

i have a problem

with my computer.

does it start?

is it plugged in?

does smoke come

out of the back?

no

yes.

yes.

i conclude that you

have a problem with

your computer.

. . .

234	 Chapter 9 I Splitting data by asking questions: Decision trees

In this chapter, we cover decision trees. Decision trees are powerful classification and regression
models, which also give us a great deal of information about our dataset. Just like the previous
models we’ve learned in this book, decision trees are trained with labeled data, where the labels
that we want to predict can be classes (for classification) or values (for regression). For most of
this chapter, we focus on decision trees for classification, but near the end of the chapter, we
describe decision trees for regression. However, the structure and training process of both types
of tree is similar. In this chapter, we develop several use cases, including an app-recommendation
system and a model for predicting admissions at a university.

Decision trees follow an intuitive process to make predictions—one that very much resembles
human reasoning. Consider the following scenario: we want to decide whether we should wear a
jacket today. What does the decision process look like? We may look outside and check if it’s raining.
If it’s raining, then we definitely wear a jacket. If it’s not, then maybe we check the temperature. If it is
hot, then we don’t wear a jacket, but if it is cold, then we wear a jacket. In figure 9.1, we can see a graph
of this decision process, where the decisions are made by traversing the tree from top to bottom.

Raining?

Hot?

Yes No

Don’t wear
a jacket.

Wear a
jacket.

Wear a
jacket.

Yes No

Figure 9.1  A decision tree used to decide whether we want to wear a jacket or not on a given day. We make the
decision by traversing the tree down and taking the branch corresponding to each correct answer.

Our decision process looks like a tree, except it is upside down. The tree is formed of vertices, called
nodes, and edges. On the very top, we can see the root node, from which two branches emanate. Each
of the nodes has either two or zero branches (edges) emanating from them, and for this reason, we call
it a binary tree. The nodes that have two branches emanating from them are called decision nodes, and
the nodes with no branches emanating from them are called leaf nodes, or leaves. This arrangement of
nodes, leaves, and edges is what we call a decision tree. Trees are natural objects in computer science,
because computers break every process into a sequence of binary operations.

The simplest possible decision tree, called a decision stump, is formed by a single decision node
(the root node) and two leaves. This represents a single yes-or-no question, based on which we
immediately make a decision.

	 Splitting data by asking questions: Decision trees� 235

The depth of a decision tree is the number of levels underneath the root node. Another way to
measure it is by the length of the longest path from the root node to a leaf, where a path is mea-
sured by the number of edges it contains. The tree in figure 9.1 has a depth of 2. A decision stump
has a depth of 1.

Here is a summary of the definitions we’ve learned so far:

decision tree  A machine learning model based on yes-or-no questions and represented
by a binary tree. The tree has a root node, decision nodes, leaf nodes, and branches.

root node  The topmost node of the tree. It contains the first yes-or-no question. For con-
venience, we refer to it as the root.

decision node  Each yes-or-no question in our model is represented by a decision node,
with two branches emanating from it (one for the “yes” answer, and one for the “no”
answer).

leaf node  A node that has no branches emanating from it. These represent the decisions
we make after traversing the tree. For convenience, we refer to them as leaves.

branch  The two edges emanating from each decision node, corresponding to the “yes”
and “no” answers to the question in the node. In this chapter, by convention, the branch to
the left corresponds to “yes” and the branch to the right to “no.”

depth  The number of levels in the decision tree. Alternatively, it is the number of branches
on the longest path from the root node to a leaf node.

Throughout this chapter, nodes are drawn as rectangles with rounded edges, the answers in the
branches as diamonds, and leaves as ovals. Figure 9.2 shows how a decision tree looks in general.

Raining?

Hot?

Root node

Decision node

LeafLeaf

Leaf

Yes No

Yes No

Don’t wear
a jacket.

Wear a
jacket.

Wear a
jacket.

Branch

Figure 9.2  A regular decision tree with a root node, decision nodes, branches, and leaves. Note that each
decision node contains a yes-or-no question. From each possible answer, one branch emanates, which can lead
to another decision node or a leaf. This tree has a depth of 2, because the longest path from a leaf to the root
goes through two branches.

236	 Chapter 9 I Splitting data by asking questions: Decision trees

How did we build this tree? Why were those the questions we asked? We could have also
checked if it was Monday, if we saw a red car outside, or if we were hungry, and built the fol-
lowing decision tree:

Monday?

Hungry?Red car?

Yes No

Don’t wear
a jacket.

Wear a
jacket.

Don’t wear
a jacket.

Wear a
jacket.

Yes No Yes No

Figure 9.3  A second (maybe not as good) decision tree we could use to decide whether we want to wear a
jacket on a given day

Which tree do we think is better when it comes to deciding whether or not to wear a jacket: tree
1 (figure 9.1) or tree 2 (figure 9.3)? Well, as humans, we have enough experience to figure out that
tree 1 is much better than tree 2 for this decision. How would a computer know? Computers
don’t have experience per se, but they have something similar, which is data. If we wanted to
think like a computer, we could just go over all possible trees, try each one of them for some
time—say, one year—and compare how well they did by counting how many times we made the
right decision using each tree. We’d imagine that if we use tree 1, we were correct most days,
whereas if we used tree 2, we may have ended up freezing on a cold day without a jacket or wear-
ing a jacket on an extremely hot day. All a computer has to do is go over all trees, collect data, and
find which one is the best one, right?

Almost! Unfortunately, even for a computer, searching over all the possible trees to find the
most effective one would take a really long time. But luckily, we have algorithms that make this
search much faster, and thus, we can use decision trees for many wonderful applications, includ-
ing spam detection, sentiment analysis, and medical diagnosis. In this chapter, we’ll go over an
algorithm for constructing good decision trees quickly. In a nutshell, we build the tree one node
at a time, starting from the top. To pick the right question corresponding to each node, we go
over all the possible questions we can ask and pick the one that is right the highest number of
times. The process goes as follows:

	 Splitting data by asking questions: Decision trees� 237

Picking a good first question

We need to pick a good first question for the root of our tree. What would be a good question that
helps us decide whether to wear a jacket on a given day? Initially, it can be anything. Let’s say we
come up with five candidates for our first question:

1.	 Is it raining?

2.	 Is it cold outside?

3.	 Am I hungry?

4.	 Is there a red car outside?

5.	 Is it Monday?

Out of these five questions, which one seems like the best one to help us decide whether we
should wear a jacket? Our intuition says that the last three questions are useless to help us decide.
Let’s say that from experience, we’ve noticed that among the first two, the first one is more use-
ful. We use that question to start building our tree. So far, we have a simple decision tree, or a
decision stump, consisting of that single question, as illustrated in Figure 9.4.

Raining?

Yes No

Wear a
jacket.

Don’t wear
a jacket.

Figure 9.4  A simple decision tree (decision stump) that consists of only the question, “Is it raining?” If the
answer is yes, the decision we make is to wear a jacket.

Can we do better? Imagine that we start noticing that when it rains, wearing a jacket is always the
correct decision. However, there are days on which it doesn’t rain, and not wearing a jacket is not
the correct decision. This is where question 2 comes to our rescue. We use that question to help
us in the following way: after we check that it is not raining, then we check the temperature, and
if it is cold, we decide to wear a jacket. This turns the left leaf of the tree into a node, with two
leaves emanating from it, as shown in figure 9.5.

238	 Chapter 9 I Splitting data by asking questions: Decision trees

Raining?

Hot?

Yes No

Wear a
jacket.

Don’t wear
a jacket.

Wear a
jacket.

Yes No

Figure 9.5  A slightly more complicated decision tree than the one in figure 9.4, where we have picked one leaf
and split it into two further leaves. This is the same tree as in figure 9.1.

Now we have our decision tree. Can we do better? Maybe we can if we add more nodes and leaves
to our tree. But for now, this one works very well. In this example, we made our decisions using
our intuition and our experience. In this chapter, we learn an algorithm that builds these trees
solely based on data.

Many questions may arise in your head, such as the following:

1.	 How exactly do you decide which is the best possible question to ask?

2.	 Does the process of always picking the best possible question actually get us to build the
best decision tree?

3.	 Why don’t we instead build all the possible decision trees and pick the best one from there?

4.	 Will we code this algorithm?

5.	 Where can we find decision trees in real life?

6.	 We can see how decision trees work for classification, but how do they work for regression?

This chapter answers all of these questions, but here are some quick answers:

1.	 How exactly do you decide which is the best possible question to ask?

We have several ways to do this. The simplest one is using accuracy, which means: which
question helps me be correct more often? However, in this chapter, we also learn other
methods, such as Gini index or entropy.

2.	 Does the process of always picking the best possible question actually get us to build
the best decision tree?

Actually, this process does not guarantee that we get the best possible tree. This is what
we call a greedy algorithm. Greedy algorithms work as follows: at every point, the

	 Splitting data by asking questions: Decision trees� 239

algorithm makes the best possible available move. They tend to work well, but it’s not
always the case that making the best possible move at each timestep gets you to the best
overall outcome. There may be times in which asking a weaker question groups our data
in a way that we end up with a better tree at the end of the day. However, the algorithms
for building decision trees tend to work very well and very quickly, so we’ll live with this.
Look at the algorithms that we see in this chapter, and try to figure out ways to improve
them by removing the greedy property!

3.	 Why don’t we instead build all the possible decision trees and pick the best one from
there?

The number of possible decision trees is very large, especially if our dataset has many
features. Going through all of them would be very slow. Here, finding each node requires
only a linear search across the features and not across all the possible trees, which makes
it much faster.

4.	 Will we code this algorithm?

This algorithm can be coded by hand. However, we’ll see that because it is recursive, the
coding can get a bit tedious. Thus, we’ll use a useful package called Scikit-Learn to build
decision trees with real data.

5.	 Where can we find decision trees in real life?

In many places! They are used extensively in machine learning, not only because they
work very well but also because they give us a lot of information on our data. Some places
in which decision trees are used are in recommendation systems (to recommend videos,
movies, apps, products to buy, etc.), in spam classification (to decide whether or not an
email is spam), in sentiment analysis (to decide whether a sentence is happy or sad), and
in biology (to decide whether or not a patient is sick or to help identify certain hierarchies
in species or in types of genomes).

6.	 We can see how decision trees work for classification, but how do they work for
regression?

A regression decision tree looks exactly like a classification decision tree, except for the
leaves. In a classification decision tree, the leaves have classes, such as yes and no. In a
regression decision tree, the leaves have values, such as 4, 8.2, or –199. The prediction our
model makes is given by the leaf at which we arrived when traversing the tree in a
downward fashion.

The first use case that we’ll study in this chapter is a popular application in machine learning,
and one of my favorites: recommendation systems.

The code for this chapter is available in this GitHub repository: https://github.com/luisguiserrano/
manning/tree/master/Chapter_9_Decision_Trees.

https://github.com/luisguiserrano/manning/tree/master/Chapter_9_Decision_Trees
https://github.com/luisguiserrano/manning/tree/master/Chapter_9_Decision_Trees

240	 Chapter 9 I Splitting data by asking questions: Decision trees

The problem: We need to recommend apps to users
according to what they are likely to download
Recommendation systems are one of the most common and exciting applications in machine
learning. Ever wonder how Netflix recommends movies, YouTube guesses which videos you may
watch, or Amazon shows you products you might be interested in buying? These are all examples
of recommendation systems. One simple and interesting way to see recommendation problems
is to consider them classification problems. Let’s start with an easy example: our very own
app-recommendation system using decision trees.

Let’s say we want to build a system that recommends to users which app to download among
the following options. We have the following three apps in our store (figure 9.6):

•	 Atom Count: an app that counts the number of atoms in your body

•	 Beehive Finder: an app that maps your location and finds the closest beehives

•	 Check Mate Mate: an app for finding Australian chess players

Atom Count Beehive Finder Check Mate Mate

Figure 9.6  The three apps we are recommending: Atom Count, an app for counting the number of atoms in
your body; Beehive Finder, an app for locating the nearest beehives to your location; and Check Mate Mate, an
app for finding Australian chess players in your area

The training data is a table with the platform used by the user (iPhone or Android), their age, and
the app they have downloaded (in real life there are many more platforms, but for simplicity we’ll
assume that these are the only two options). Our table contains six people, as shown in table 9.1.

Table 9.1  A dataset with users of an app store. For each customer, we record their platform,
age, and the app they downloaded.

Platform Age App

iPhone 15 Atom Count

iPhone 25 Check Mate Mate

Android 32 Beehive Finder

iPhone 35 Check Mate Mate

Android 12 Atom Count

Android 14 Atom Count

	 The solution: Building an app-recommendation system� 241

Given this table, which app would you recommend to each of the following three customers?

•	 Customer 1: a 13-year-old iPhone user

•	 Customer 2: a 28-year-old iPhone user

•	 Customer 3: a 34-year-old Android user

What we should do follows:

Customer 1: a 13-year-old iPhone user. To this customer, we should recommend Atom Count,
because it seems (looking at the three customers in their teens) that young people tend to down-
load Atom Count.

Customer 2: a 28-year-old iPhone user. To this customer, we should recommend Check Mate
Mate, because looking at the two iPhone users in the dataset (aged 25 and 35), they both down-
loaded Check Mate Mate.

Customer 3: a 34-year-old Android user. To this customer, we should recommend Beehive Finder,
because there is one Android user in the dataset who is 32 years old, and they downloaded Beehive
Finder.

However, going customer by customer seems like a tedious job. Next, we’ll build a decision tree
to take care of all customers at once.

The solution: Building an app-recommendation
system
In this section, we see how to build an app-recommendation system using decision trees. In a
nutshell, the algorithm to build a decision tree follows:

1.	 Figure out which of the data is the most useful to decide which app to recommend.

2.	 This feature splits the data into two smaller datasets.

3.	 Repeat processes 1 and 2 for each of the two smaller datasets.

In other words, what we do is decide which of the two features (platform or age) is more success-
ful at determining which app the users will download and pick this one as our root of the deci-
sion tree. Then, we iterate over the branches, always picking the most determining feature for the
data in that branch, thus building our decision tree.

First step to build the model: Asking the best question
The first step to build our model is to figure out the most useful feature: in other words, the most
useful question to ask. First, let’s simplify our data a little bit. Let’s call everyone under 20 years
old “Young” and everyone 20 or older “Adult” (don’t worry—we’ll go back to the original dataset
soon, in the section “Splitting the data using continuous features, such as age”). Our modified
dataset is shown in table 9.2.

242	 Chapter 9 I Splitting data by asking questions: Decision trees

Table 9.2  A simplified version of the dataset in table 9.1, where the age column has been
simplified to two categories, “young” and “adult”

Platform Age App

iPhone Young Atom Count

iPhone Adult Check Mate Mate

Android Adult Beehive Finder

iPhone Adult Check Mate Mate

Android Young Atom Count

Android Young Atom Count

The building blocks of decision trees are questions of the form “Does the user use an iPhone?” or
“Is the user young?” We need one of these to use as our root of the tree. Which one should we
pick? We should pick the one that best determines the app they downloaded. To decide which
question is better at this, let’s compare them.

First question: Does the user use an iPhone or Android?

This question splits the users into two groups, the iPhone users and Android users. Each group
has three users in it. But we need to keep track of which app each user downloaded. A quick look
at table 9.2 helps us notice the following:

•	 Of the iPhone users, one downloaded Atom Count and two downloaded Check Mate Mate.

•	 Of the Android users, two downloaded Atom Count and one downloaded Beehive Finder.

The resulting decision stump is shown in figure 9.7.

Platform= iPhone?

i i A i A A

Yes No

Split by platform

i i i A A A

Figure 9.7  If we split our users by platform, we get this split: the iPhone users are on the left, and the Android
users on the right. Of the iPhone users, one downloaded Atom Count and two downloaded Check Mate Mate.
Of the Android users, two downloaded Atom Count and one downloaded Beehive Finder.

	 The solution: Building an app-recommendation system� 243

Now let’s see what happens if we split them by age.

Second question: Is the user young or adult?

This question splits the users into two groups, the young and the adult. Again, each group has
three users in it. A quick look at table 9.2 helps us notice what each user downloaded, as follows:

•	 The young users all downloaded Atom Count.

•	 Of the adult users, two downloaded Atom Count and one downloaded Beehive Finder.

The resulting decision stump is shown in figure 9.8.

Age = young?

Y A A A Y Y

Yes No

Split by age

Y Y Y A A A

Figure 9.8  If we split our users by age, we get this split: the young are on the left, and the adults on the right.
Out of the young users, all three downloaded Atom Count. Out of the adult users, one downloaded Beehive
Finder and two downloaded Check Mate Mate.

From looking at figures 9.7 and 9.8, which one looks like a better split? It seems that the second
one (based on age) is better, because it has picked up on the fact that all three young people
downloaded Atom Count. But we need the computer to figure out that age is a better feature, so
we’ll give it some numbers to compare. In this section, we learn three ways to compare these two
splits: accuracy, Gini impurity, and entropy. Let’s start with the first one: accuracy.

Accuracy: How often is our model correct?

We learned about accuracy in chapter 7, but here is a small recap. Accuracy is the fraction of
correctly classified data points over the total number of data points.

Suppose that we are allowed only one question, and with that one question, we must deter-
mine which app to recommend to our users. We have the following two classifiers:

•	 Classifier 1: asks the question “What platform do you use?” and from there, determines
what app to recommend

•	 Classifier 2: asks the question “What is your age?” and from there, determines what app
to recommend

244	 Chapter 9 I Splitting data by asking questions: Decision trees

Let’s look more carefully at the classifiers. The key observation follows: if we must recommend
an app by asking only one question, our best bet is to look at all the people who answered with
the same answer and recommend the most common app among them.

Classifier 1: What platform do you use?

•	 If the answer is “iPhone,” then we notice that of the iPhone users, the majority
downloaded Check Mate Mate. Therefore, we recommend Check Mate Mate to all the
iPhone users. We are correct two times out of three.

•	 If the answer is “Android,” then we notice that of the Android users, the majority
downloaded Atom Count, so that is the one we recommend to all the Android users. We
are correct two times out of three.

Classifier 2: What is your age?

•	 If the answer is “young,” then we notice that all the young people downloaded Atom
Count, so that is the recommendation we make. We are correct three times out of three.

•	 If the answer is “adult,” then we notice that of the adults, the majority downloaded Check
Mate Mate, so we recommend that one. We are correct two times out of three.

Notice that classifier 1 is correct four times out of six, and classifier 2 is correct five times out of
six. Therefore, for this dataset, classifier 2 is better. In figure 9.9, you can see the two classifiers
with their accuracy. Notice that the questions are reworded so that they have yes-or-no answers,
which doesn’t change the classifiers or the outcome.

Classifier 2: By age

Age = young?

Correct 5 out of 6 times
Accuracy: 83.33%

Classifier 1: By platform

Platform = iPhone?

Correct 4 out of 6 times
Accuracy: 66.67%

Recommend Recommend

Yes No Yes No

Recommend Recommend

Figure 9.9  Classifier 1 uses platform, and classifier 2 uses age. To make the prediction at each leaf, each
classifier picks the most common label among the samples in that leaf. Classifier 1 is correct four out of six times,
and classifier 2 is correct five out of six times. Therefore, based on accuracy, classifier 2 is better.

	 The solution: Building an app-recommendation system� 245

Gini impurity index: How diverse is my dataset?

The Gini impurity index, or Gini index, is another way we can compare the platform and age
splits. The Gini index is a measure of diversity in a dataset. In other words, if we have a set in
which all the elements are similar, this set has a low Gini index, and if all the elements are differ-
ent, it has a large Gini index. For clarity, consider the following two sets of 10 colored balls (where
any two balls of the same color are indistinguishable):

•	 Set 1: eight red balls, two blue balls

•	 Set 2: four red balls, three blue balls, two yellow balls, one green ball

Set 1 looks more pure than set 2, because set 1 contains mostly red balls and a couple of blue
ones, whereas set 2 has many different colors. Next, we devise a measure of impurity that assigns
a low value to set 1 and a high value to set 2. This measure of impurity relies on probability.
Consider the following question:

If we pick two random elements of the set, what is the probability that they have a different
color? The two elements don’t need to be distinct; we are allowed to pick the same element
twice.

For set 1, this probability is low, because the balls in the set have similar colors. For set 2, this prob-
ability is high, because the set is diverse, and if we pick two balls, they’re likely to be of different
colors. Let’s calculate these probabilities. First, notice that by the law of complementary probabili-
ties (see the section “What the math just happened?” in chapter 8), the probability that we pick two
balls of different colors is 1 minus the probability that we pick two balls of the same color:

P(picking two balls of different color) = 1 – P(picking two balls of the same color)

Now let’s calculate the probability that we pick two balls of the same color. Consider a general set,
where the balls have n colors. Let’s call them color 1, color 2, all the way up to color n. Because
the two balls must be of one of the n colors, the probability of picking two balls of the same color
is the sum of probabilities of picking two balls of each of the n colors:

P(picking two balls of the same color) = P(both balls are color 1) +
P(both balls are color 2) + … + P(both balls are color n)

What we used here is the sum rule for disjoint probabilities, that states the following:

sum rule for disjoint probabilities  If two events E and F are disjoint, namely, they never
occur at the same time, then the probability of either one of them happening (the union of
the events) is the sum of the probabilities of each of the events. In other words,

P(E È F) = P(E) + P(F)

Now, let’s calculate the probability that two balls have the same color, for each of the colors. Notice
that we’re picking each ball completely independently from the others. Therefore, by the product
rule for independent probabilities (section “What the math just happened?” in chapter 8), the

246	 Chapter 9 I Splitting data by asking questions: Decision trees

probability that both balls have color 1 is the square of the probability that we pick one ball and
it is of color 1. In general, if p

i
 is the probability that we pick a random ball and it is of color i, then

P(both balls are color i) = p
i
2.

Putting all these formulas together (figure 9.10), we get that

P(picking two balls of different colors) = 1 – p
1

2 – p
2

2 – … – p
n

2.

This last formula is the Gini index of the set.

= 1 – P(picking two balls of the same color)

= 1 – p1
2 – p2

2 – . . . – pn
2

P(Both balls are color 1)

P(Both balls are color 2)

P(Both balls are color n)

Gini impurity Index = P(picking two balls of di erenff t colors)

Figure 9.10  Summary of the calculation of the Gini impurity index

Finally, the probability that we pick a random ball of color i is the number of balls of color i
divided by the total number of balls. This leads to the formal definition of the Gini index.

gini impurity index  In a set with m elements and n classes, with a
i
 elements belonging

to the i-th class, the Gini impurity index is

Gini = 1 – p
1

2 – p
2

2 – … – p
n

2,

where p
i
= ia

m
. This can be interpreted as the probability that if we pick two random elements

out of the set, they belong to different classes.
Now we can calculate the Gini index for both of our sets. For clarity, the calculation of the

Gini index for set 1 is illustrated in figure 9.11 (with red and blue replaced by black and white).

Set 1: {red, red, red, red, red, red, red, red, blue, blue} (eight red balls, two blue balls)

Gini impurity index =
2 2

8 2 68
1 1 0.32

10 10 100
   − − =− =      

Set 2: {red, red, red, red, blue, blue, blue, yellow, yellow, green}

Gini impurity index =
2 2 2 2

4 3 2 1 30
1 1 0.7

10 10 10 10 100
       − − − − =− =              

	 The solution: Building an app-recommendation system� 247

Notice that, indeed, the Gini index of set 1 is larger than that of set 2.

P(di erent colors) = 1 – P(same color)ff

Second ball
Fi

rs
t b

al
l

P() = 1 – P() – P()

Gini

Figure 9.11  The calculation of the Gini index for the set with eight black balls and two white balls. Note that if
the total area of the square is 1, the probability of picking two black balls is 0.82, and the probability of picking
two white balls is 0.22 (these two are represented by the shaded squares). Thus, the probability of picking two
balls of a different color is the remaining area, which is 1 – 0.82 – 0.22 =0.32. That is the Gini index.

How do we use the Gini index to decide which of the two ways to split the data (age or platform)
is better? Clearly, if we can split the data into two purer datasets, we have performed a better split.
Thus, let’s calculate the Gini index of the set of labels of each of the leaves. Looking at figure 9.12,
here are the labels of the leaves (where we abbreviate each app by the first letter in its name):

Classifier 1 (by platform):

•	 Left leaf (iPhone): {A, C, C}

•	 Right leaf (Android): {A, A, B}

Classifier 2 (by age):

•	 Left leaf (young): {A, A, A}

•	 Right leaf (adult): {B, C, C}

The Gini indices of the sets {A, C, C}, {A, A, B}, and {B, C, C} are all the same:
2 2

2 1
1 0.444

3 3
   − − =      

.

The Gini index of the set {A, A, A} is
2

3
1 0

3
 − =  

. In general, the Gini index of a pure set is

always 0. To measure the purity of the split, we average the Gini indices of the two leaves.
Therefore, we have the following calculations:

248	 Chapter 9 I Splitting data by asking questions: Decision trees

Classifier 1 (by platform):

Average Gini index =
1

2
(0.444+0.444) = 0.444

Classifier 2 (by age):

Average Gini index =
1

2
(0.444+0) = 0.222

Platform = iPhone?

Average Gini impurity index: 0.444

Gini: 0.444

Yes No

i

i i i
Gini: 0.444

A A A

Age = young?

Average Gini impurity index: 0.222

Gini: 0

Yes No

Y Y Y
Gini: 0.444
A A A

Y A A A Y Yi iA A A

Figure 9.12  The two ways to split the dataset, by platform and age, and their Gini index calculations. Notice
that splitting the dataset by age gives us two smaller datasets with a lower average Gini index. Therefore, we
choose to split the dataset by age.

We conclude that the second split is better, because it has a lower average Gini index.

aside  The Gini impurity index should not be confused with the Gini coefficient. The
Gini coefficient is used in statistics to calculate the income or wealth inequality in coun-
tries. In this book, whenever we talk about the Gini index, we are referring to the Gini
impurity index.

Entropy: Another measure of diversity with strong applications in information theory

In this section, we learn another measure of homogeneity in a set—its entropy—which is based
on the physical concept of entropy and is highly important in probability and information the-
ory. To understand entropy, we look at a slightly strange probability question. Consider the same
two sets of colored balls as in the previous section, but think of the colors as an ordered set.

•	 Set 1: {red, red, red, red, red, red, red, red, blue, blue} (eight red balls, two blue balls)

•	 Set 2: {red, red, red, red, blue, blue, blue, yellow, yellow, green} (four red balls, three blue
balls, two yellow balls, one green ball)

	 The solution: Building an app-recommendation system� 249

Now, consider the following scenario: we have set 1 inside a bag, and we start picking balls out of
this bag and immediately return each ball we just picked back to the bag. We record the colors of
the balls we picked. If we do this 10 times, imagine that we get the following sequence:

•	 Red, red, red, blue, red, blue, blue, red, red, red

Here is the main question that defines entropy:

What is the probability that, by following the procedure described in the previous para-
graph, we get the exact sequence that defines set 1, which is {red, red, red, red, red, red, red,
red, blue, blue}?

This probability is not very large, because we must be really lucky to get this sequence. Let’s cal-

culate it. We have eight red balls and two blue balls, so the probability that we get a red ball is
8 8 8 8 8 8 8 8 2 2

10 10 10 10 10 10 10 10 10 10

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,

and the probability that we get a blue ball is
8 8 8 8 8 8 8 8 2 2

10 10 10 10 10 10 10 10 10 10

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . Because all the draws are independent, the proba-

bility that we get the desired sequence is

P(r, r, r, r, r, r, r, r, b, b)
8 8 8 8 8 8 8 8 2 2

10 10 10 10 10 10 10 10 10 10

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

8 2
8 2

 0.0067108864
10 10

   = =      
.

This is tiny, but can you imagine the corresponding probability for set 2? For set 2, we are picking
balls out of a bag with four red balls, three blue balls, two yellow balls, and one green ball and
hoping to obtain the following sequence:

•	 Red, red, red, red, blue, blue, blue, yellow, yellow, green.

This is nearly impossible, because we have many colors and not many balls of each color. This
probability, which is calculated in a similar way, is

P(r, r, r, r, b, b, b, y, y, g)
4 4 4 4 3 3 3 2 2 1

10 10 10 10 10 10 10 10 10 10

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

4 3 2 1
4 3 2 1

 0.0000027648
10 10 10 10

       = =              
.

The more diverse the set, the more unlikely we’ll be able to get the original sequence by picking
one ball at a time. In contrast, the most pure set, in which all balls are of the same color, is easy
to obtain this way. For example, if our original set has 10 red balls, each time we pick a random
ball, the ball is red. Thus, the probability of getting the sequence {red, red, red, red, red, red, red,
red, red, red} is 1.

250	 Chapter 9 I Splitting data by asking questions: Decision trees

These numbers are very small for most cases—and this is with only 10 elements. Imagine if
our dataset had one million elements. We would be dealing with tremendously small numbers.
When we have to deal with really small numbers, using logarithms is the best method, because
they provide a convenient way to write small numbers. For instance, 0.000000000000001 is equal
to 10–15, so its logarithm in base 10 is –15, which is a much nicer number to work with.

The entropy is defined as follows: we start with the probability that we recover the initial sequence
by picking elements in our set, one at a time, with repetition. Then we take the logarithm, and
divide by the total number of elements in the set. Because decision trees deal with binary decisions,
we’ll be using logarithms in base 2. The reason we took the negative of the logarithm is because
logarithms of very small numbers are all negative, so we multiply by –1 to turn it into a positive
number. Because we took a negative, the more diverse the set, the higher the entropy.

Now we can calculate the entropies of both sets and expand them using the following two
identities:

•	 log(ab) = log(a) + log(b)

•	 log(ac) = c log(a)

Set 1: {red, red, red, red, red, red, red, red, blue, blue} (eight red balls, two blue balls)

Entropy =

8 2

2 2 2

1 8 2 8 8 2 2
log log log 0.722

10 10 10 10 10 10 10
       − = =− − =             

 
 
  

Set 2: {red, red, red, red, blue, blue, blue, yellow, yellow, green}

Entropy =
4 3 2 1

2

1 4 3 2 1
log

10 10 10 10 10
       −            

 
 
   

2 2 2 2

4 4 3 3 2 2 1 1
 log log log log 1.846

10 10 10 10 10 10 10 10
       = − − − − =              

Notice that the entropy of set 2 is larger than the entropy of set 1, which implies that set 2 is more
diverse than set 1. The following is the formal definition of entropy:

entropy  In a set with m elements and n classes, with a
i
 elements belonging to the i-th

class, the entropy is

Entropy = –p
1
 log

2
(p

1
) – p

2
 log

2
(p

2
) – … – p

n
 log

2
(p

n
),

where .i
i

a
p

m
=

We can use entropy to decide which of the two ways to split the data (platform or age) is better in
the same way as we did with the Gini index. The rule of thumb is that if we can split the data into

	 The solution: Building an app-recommendation system� 251

two datasets with less combined entropy, we have performed a better split. Thus, let’s calculate
the entropy of the set of labels of each of the leaves. Again, looking at figure 9.12, here are the
labels of the leaves (where we abbreviate each app by the first letter in its name):

Classifier 1 (by platform):
Left leaf: {A, C, C}
Right leaf: {A, A, B}

Classifier 2 (by age):
Left leaf: {A, A, A}
Right leaf: {B, C, C}

The entropies of the sets {A, C, C}, {A, A, B}, and {B, C, C} are all the same: 2 2

2 2 1 1
log log

3 3 3 3
   − −      

= 0.918. The entropy of the set {A, A, A} is ()2

3
log log 1 0.

3
 − =− =  

 In general, the entropy of a

set in which all elements are the same is always 0. To measure the purity of the split, we average
the entropy of the sets of labels of the two leaves, as follows (illustrated in figure 9.13):

Classifier 1 (by platform):

Average entropy =
1

2
(0.918 + 0.918) = 0.918

Classifier 2 (by age):

Average entropy =
1

2
(0.918+0) = 0.459

Platform = iPhone?

Average entropy: 0.918

Entropy: 0.918

Yes No

i i i
Entropy: 0.918
A A A

Age = young?

Average entropy: 0.459

Entropy: 0

Yes No

Y A A A Y Y

Y Y Y
Entropy: 0.918

A A A

i i iA A A

Figure 9.13  The two ways to split the dataset, by platform and age, and their entropy calculations. Notice that
splitting the dataset by age gives us two smaller datasets with a lower average entropy. Therefore, we again
choose to split the dataset by age.

Thus, again we conclude that the second split is better, because it has a lower average entropy.

252	 Chapter 9 I Splitting data by asking questions: Decision trees

Entropy is a tremendously important concept in probability and statistics, because it has strong
connections with information theory, mostly thanks to the work of Claude Shannon. In fact, an
important concept called information gain is precisely the change in entropy. To learn more on the
topic, please see appendix C for a video and a blog post which covers this topic in much more detail.

Classes of different sizes? No problem: We can take weighted averages

In the previous sections we learned how to perform the best possible split by minimizing average
Gini impurity index or entropy. However, imagine that you have a dataset with eight data points
(which when training the decision tree, we also refer to as samples), and you split it into two
datasets of sizes six and two. As you may imagine, the larger dataset should count for more in the
calculations of Gini impurity index or entropy. Therefore, instead of considering the average, we
consider the weighted average, where at each leaf, we assign the proportion of points correspond-
ing to that leaf. Thus, in this case, we would weigh the first Gini impurity index (or entropy) by
6/8, and the second one by 2/8. Figure 9.14 shows an example of a weighted average Gini impurity
index and a weighted average entropy for a sample split.

Gini = 0.444 Gini = 0

Weighted average Gini =

Yes No

Weighted average entropy =

Entropy = 0.918 Entropy = 0

Yes No

Figure 9.14  A split of a dataset of size eight into two datasets of sizes six and two. To calculate the average Gini
index and the average entropy, we weight the index of the left dataset by 68 and that of the right dataset by 2

8
.

This results in a weighted Gini index of 0.333 and a weighted entropy of 0.689.

Now that we’ve learned three ways (accuracy, Gini index, and entropy) to pick the best split, all
we need to do is iterate this process many times to build the decision tree! This is detailed in the
next section.

Second step to build the model: Iterating
In the previous section, we learned how to split the data in the best possible way using one of the
features. That is the bulk of the training process of a decision tree. All that is left to finish build-
ing our decision tree is to iterate on this step many times. In this section we learn how to do this.

Using the three methods, accuracy, Gini index, and entropy, we decided that the best split was
made using the “age” feature. Once we make this split, our dataset is divided into two datasets. The
split into these two datasets, with their accuracy, Gini index, and entropy, is illustrated in figure 9.15.

	 The solution: Building an app-recommendation system� 253

Accuracy: 100%
Gini: 0

Entropy: 0

Y Y Y

Age = young?

Yes No

i A A

Accuracy: 66.67%
Gini: 0.444

Entropy: 0.918

A A A
i A i

Figure 9.15  When we split our dataset by age, we get two datasets. The one on the left has three users who
downloaded Atom Count, and the one on the right has one user who downloaded Beehive Count and two who
downloaded Check Mate Mate.

Notice that the dataset on the left is pure—all the labels are the same, its accuracy is 100%, and
its Gini index and entropy are both 0. There’s nothing more we can do to split this dataset or to
improve the classifications. Thus, this node becomes a leaf node, and when we get to that leaf, we
return the prediction “Atom Count.”

The dataset on the right can still be divided, because it has two labels: “Beehive Count” and
“Check Mate Mate.” We’ve used the age feature already, so let’s try using the platform feature. It
turns out that we’re in luck, because the Android user downloaded Beehive Count, and the two
iPhone users downloaded Check Mate Mate. Therefore, we can split this leaf using the platform
feature and obtain the decision node shown in figure 9.16.

Accuracy: 100%
Gini: 0

Entropy: 0

Platform = iPhone?

Yes No

i i

A A A

Accuracy: 100%
Gini: 0

Entropy: 0

A
A

i A i

A A

Figure 9.16  We can split the right leaf of the tree in figure 9.15 using platform and obtain two pure datasets.
Each one of them has an accuracy of 100% and a Gini index and entropy of 0.

254	 Chapter 9 I Splitting data by asking questions: Decision trees

After this split, we are done, because we can’t improve our splits any further. Thus, we obtain the
tree in figure 9.17.

Final decision tree

Age = young?

Platform = iPhone?

Yes No

Yes No

Figure 9.17  The resulting decision tree has two nodes and three leaves. This tree predicts every point in the
original dataset correctly.

This is the end of our process, and we have built a decision tree that classifies our entire dataset.
We almost have all the pseudocode for the algorithm, except for some final details which we see
in the next section.

Last step: When to stop building the tree and other hyperparameters
In the previous section, we built a decision tree by recursively splitting our dataset. Each split
was performed by picking the best feature to split. This feature was found using any of the
following metrics: accuracy, Gini index, or entropy. We finish when the portion of the dataset
corresponding to each of the leaf nodes is pure—in other words, when all the samples on it
have the same label.

Many problems can arise in this process. For instance, if we continue splitting our data for too
long, we may end up with an extreme situation in which every leaf contains very few samples,
which can lead to serious overfitting. The way to prevent this is to introduce a stopping condi-
tion. This condition can be any of the following:

1.	 Don’t split a node if the change in accuracy, Gini index, or entropy is below some
threshold.

2.	 Don’t split a node if it has less than a certain number of samples.

3.	 Split a node only if both of the resulting leaves contain at least a certain number of
samples.

4.	 Stop building the tree after you reach a certain depth.

	 The solution: Building an app-recommendation system� 255

All of these stopping conditions require a hyperparameter. More specifically, these are the hyper-
parameters corresponding to the previous four conditions:

1.	 The minimum amount of change in accuracy (or Gini index, or entropy)

2.	 The minimum number of samples that a node must have to split it

3.	 The minimum number of samples allowed in a leaf node

4.	 The maximum depth of the tree

The way we pick these hyperparameters is either by experience or by running an exhaustive search
where we look for different combinations of hyperparameters and choose the one that performs
best in our validation set. This process is called grid search, and we’ll study it in more detail in the
section "Tuning the hyperparameters to find the best model: Grid search" in chapter 13.

The decision tree algorithm: How to build a decision tree and make predictions
with it

Now we are finally ready to state the pseudocode for the decision tree algorithm, which allows us
to train a decision tree to fit a dataset.

Pseudocode for the decision tree algorithm

Inputs:

•	 A training dataset of samples with their associated labels

•	 A metric to split the data (accuracy, Gini index, or entropy)

•	 One (or more) stopping condition

Output:

•	 A decision tree that fits the dataset

Procedure:

•	 Add a root node, and associate it with the entire dataset. This node has level 0. Call it a
leaf node.

•	 Repeat until the stopping conditions are met at every leaf node:

	– Pick one of the leaf nodes at the highest level.

	– Go through all the features, and select the one that splits the samples corresponding
to that node in an optimal way, according to the selected metric. Associate that
feature to the node.

	– This feature splits the dataset into two branches. Create two new leaf nodes, one for
each branch, and associate the corresponding samples to each of the nodes.

256	 Chapter 9 I Splitting data by asking questions: Decision trees

	– If the stopping conditions allow a split, turn the node into a decision node, and add
two new leaf nodes underneath it. If the level of the node is i, the two new leaf nodes
are at level i + 1.

	– If the stopping conditions don’t allow a split, the node becomes a leaf node. To this
leaf node, associate the most common label among its samples. That label is the
prediction at the leaf.

Return:

•	 The decision tree obtained.

To make predictions using this tree, we simply traverse down it, using the following rules:

•	 Traverse the tree downward. At every node, continue in the direction that is indicated by
the feature.

•	 When arriving at a leaf, the prediction is the label associated with the leaf (the most
common among the samples associated with that leaf in the training process).

This is how we make predictions using the app-recommendation decision tree we built previ-
ously. When a new user comes, we check their age and their platform, and take the following
actions:

•	 If the user is young, then we recommend them Atom Count.

•	 If the user is an adult, then we check their platform.

	– If the platform is Android, then we recommend Beehive Count.

	– If the platform is iPhone, then we recommend Check Mate Mate.

aside  The literature contains terms like Gini gain and information gain when training
decision trees. The Gini gain is the difference between the weighted Gini impurity index of
the leaves and the Gini impurity index (entropy) of the decision node we are splitting. In a
similar way, the information gain is the difference between the weighted entropy of the
leaves and the entropy of the root. The more common way to train decision trees is by max-
imizing the Gini gain or the information gain. However, in this chapter, we train decision
trees by, instead, minimizing the weighted Gini index or the weighted entropy. The training
process is exactly the same, because the Gini impurity index (entropy) of the decision node
is constant throughout the process of splitting that particular decision node.

	 Beyond questions like yes/no� 257

Beyond questions like yes/no
In the section “The solution: Building an app-recommendation system,” we learned how to build
a decision tree for a very specific case in which every feature was categorical and binary (meaning
that it has only two classes, such as the platform of the user). However, almost the same algo-
rithm works to build a decision tree with categorical features with more classes (such as dog/cat/
bird) and even with numerical features (such as age or average income). The main step to modify
is the step in which we split the dataset, and in this section, we show you how.

Splitting the data using non-binary categorical features, such as dog/cat/bird
Recall that when we want to split a dataset based on a binary feature, we simply ask one yes-or-no
question of the form, “Is the feature X?” For example, when the feature is the platform, a question
to ask is “Is the user an iPhone user?” If we have a feature with more than two classes, we just ask
several questions. For example, if the input is an animal that could be a dog, a cat, or a bird, then
we ask the following questions:

•	 Is the animal a dog?

•	 Is the animal a cat?

•	 Is the animal a bird?

No matter how many classes a feature has, we can split it into several binary questions (figure 9.18).

Nonbinary feature

Which animal? Dog?

Binary (yes/no) features

Yes NoDog Cat Bird

Cat?

Yes No

Bird?

Yes No

Figure 9.18  When we have a nonbinary feature, for example, one with three or more possible categories, we
instead turn it into several binary (yes-or-no) features, one for each category. For example, if the feature is a dog,
the answers to the three questions “Is it a dog?,” “Is it a cat?,” and “Is it a bird?” are “yes,” “no,” and “no.”

Each of the questions splits the data in a different way. To figure out which of the three questions
gives us the best split, we use the same methods as in the section “First step to build the model”:
accuracy, Gini index, or entropy. This process of turning a nonbinary categorical feature into sev-
eral binary features is called one-hot encoding. In the section “Turning categorical data into numer-
ical data” in chapter 13, we see it used in a real dataset.

258	 Chapter 9 I Splitting data by asking questions: Decision trees

Splitting the data using continuous features, such as age
Recall that before we simplified our dataset, the “age” feature contained numbers. Let’s get back
to our original table and build a decision tree there (table 9.3).

Table 9.3  Our original app recommendation dataset with the platform and (numerical) age of
the users. This is the same as table 9.1.

Platform Age App

iPhone 15 Atom Count

iPhone 25 Check Mate Mate

Android 32 Beehive Finder

iPhone 35 Check Mate Mate

Android 12 Atom Count

Android 14 Atom Count

The idea is to turn the Age column into several questions of the form, “Is the user younger than
X?” or “Is the user older than X?” It seems like we have infinitely many questions to ask, because
there are infinitely many numbers, but notice that many of these questions split the data in the
same way. For example, asking, “Is the user younger than 20?” and “Is the user younger than 21,”
gives us the same split. In fact, only seven splits are possible, as illustrated in figure 9.19.

15 25 32 3512 14

Possible splittings

Figure 9.19  A graphic of the seven possible ways to split the users by age. Note that it doesn’t matter where we
put the cutoffs, as long as they lie between consecutive ages (except for the first and last cutoff).

As a convention, we’ll pick the midpoints between consecutive ages to be the age for splitting. For
the endpoints, we can pick any random value that is out of the interval. Thus, we have seven
possible questions that split the data into two sets, as shown in table 9.4. In this table, we have
also calculated the accuracy, the Gini impurity index, and the entropy of each of the splits.

Notice that the fourth question (“Is the user younger than 20?”) gives the highest accuracy, the
lowest weighted Gini index, and the lowest weighted entropy and, therefore, is the best split that
can be made using the “age” feature.

	 Beyond questions like yes/no� 259

Table 9.4  The seven possible questions we can pick, each with the corresponding splitting. In
the first set, we put the users who are younger than the cutoff, and in the second set, those who
are older than the cutoff.

Question First set
(yes)

Second set
(no)

Labels Weighted
accuracy

Weighted
Gini impurity

index

Weighted
entropy

Is the user
younger than 7?

empty 12, 14, 15,
25, 32, 35

{},

{A,A,A,C,B,C}

3/6 0.611 1.459

Is the user
younger than 13?

12 14, 15, 25,
32, 35

{A},

{A,A,C,B,C}

3/6 0.533 1.268

Is the user
younger than
14.5?

12, 14 15, 25, 32,
35

{A,A}

{A,C,B,C}

4/6 0.417 1.0

Is the user
younger than
20?

12, 14,
15

25, 32, 35 {A,A,A},

{C,B,C}

5/6 0.222 0.459

Is the user
younger than
28.5?

12, 14,
15, 25

32, 35 {A,A,A,C},

{B,C}

4/6 0.416 0.874

Is the user
younger than
33.5?

12, 14,
15, 25,

32

35 {A,A,A,C,B},

{C}

4/6 0.467 1.145

Is the user
younger than
100?

12, 14,
15, 25,
32, 35

empty {A,A,A,C,B,C},

{}

3/6 0.611 1/459

Carry out the calculations in the table, and verify that you get the same answers. The entire cal-
culation of these Gini indices is in the following notebook: https://github.com/luisguiserrano/
manning/blob/master/Chapter_9_Decision_Trees/Gini_entropy_calculations.ipynb.

For clarity, let’s carry out the calculations of accuracy, weighted Gini impurity index, and
weighted entropy for the third question. Notice that this question splits the data into the follow-
ing two sets:

•	 Set 1 (younger than 14.5)

	– Ages: 12, 14

	– Labels: {A, A}

•	 Set 2 (14.5 and older):

	– Ages: 15, 25, 32, 25

	– Labels: {A, C, B, C}

https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/Gini_entropy_calculations.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/Gini_entropy_calculations.ipynb

260	 Chapter 9 I Splitting data by asking questions: Decision trees

Accuracy calculation

The most common label in set 1 is “A” and in set 2 is “C,” so these are the predictions we’ll make
for each of the corresponding leaves. In set 1, every element is predicted correctly, and in set 2,
only two elements are predicted correctly. Therefore, this decision stump is correct in four out of
the six data points, for an accuracy of 4/6 = 0.667.

For the next two calculations, notice the following:

•	 Set 1 is pure (all its labels are the same), so its Gini impurity index and entropy are both 0.

•	 In set 2, the proportions of elements with labels “A,” “B,” and “C” are
1

4
,

1

4
, and

2 1

4 2
= ,

respectively.

Weighted Gini impurity index calculation

The Gini impurity index of the set {A, A} is 0.

The Gini impurity index of the set {A, C, B, C} is
2 2 2

1 1 1
1 0.625.

4 4 2
     − − − =          

The weighted average of the two Gini impurity indices is
2 4

0 0.625 0.417.
6 6

⋅ + ⋅ =

Accuracy calculation

The entropy of the set {A, A} is 0.

The entropy of the set {A, C, B, C} is 2 2 2

1 1 1 1 1 1
log log log 1 .5.

4 4 4 4 2 2
     − − − =          

The weighted average of the two entropies is
2 4

0 1.5 1 .0.
6 6

⋅ + ⋅ =

A numerical feature becomes a series of yes-or-no questions, which can be measured and com-
pared with the other yes-or-no questions coming from other features, to pick the best one for
that decision node.

aside  This app-recommendation model is very small, so we could do it all by hand.
However, to see it in code, please check this notebook: https://github.com/luisguiserrano/
manning/blob/master/Chapter_9_Decision_Trees/App_recommendations.ipynb. The note-
book uses the Scikit-Learn package, which we introduce in more detail in the section “Using
Scikit-Learn to build a decision tree.”

https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/App_recommendations.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/App_recommendations.ipynb

	 The graphical boundary of decision trees� 261

The graphical boundary of decision trees
In this section, I show you two things: how to build a decision tree geometrically (in two dimen-
sions) and how to code a decision tree in the popular machine learning package Scikit-Learn.

Recall that in classification models, such as the perceptron (chapter 5) or the logistic classifier
(chapter 6), we plotted the boundary of the model that separated the points with labels 0 and 1,
and it turned out to be a straight line. The boundary of a decision tree is also nice, and when the
data is two-dimensional, it is formed by a combination of vertical and horizontal lines. In this
section, we illustrate this with an example. Consider the dataset in figure 9.20, where the points
with label 1 are triangles, and the points with label 0 are squares. The horizontal and vertical axes
are called x

0
 and x

1
, respectively.

Figure 9.20  A dataset with two features (x0 and x1) and two labels (triangle and square) in which we will train a
decision tree

If you had to split this dataset using only one horizontal or vertical line, what line would you
pick? There could be different lines, according to the criteria you would use to measure the effec-
tiveness of a solution. Let’s go ahead and select a vertical line at x

0
 = 5. This leaves mostly trian-

gles to the right of it and mostly squares to the left of it, with the exception of two misclassified
points, one square and one triangle (figure 9.21). Try checking all the other possible vertical and
horizontal lines, compare them using your favorite metric (accuracy, Gini index, and entropy),
and verify that this is the line that best divides the points.

Now let’s look at each half separately. This time, it’s easy to see that two horizontal lines at
x

1
 = 8 and x

1
 = 2.5 will do the job on the left and the right side, respectively. These lines com-

pletely divide the dataset into squares and triangles. Figure 9.22 illustrates the result.

262	 Chapter 9 I Splitting data by asking questions: Decision trees

Figure 9.21  If we have to use only one vertical or horizontal line to classify this dataset in the best possible
way, which one would we use? Based on accuracy, the best classifier is the vertical line at x0 = 5, where we
classify everything to the right of it as a triangle, and everything to the left of it as a square. This simple classifier
classifies 8 out of the 10 points correctly, for an accuracy of 0.8.

Figure 9.22  The classifier in figure 9.21 leaves us with two datasets, one at each side of the vertical line. If we
had to classify each one of them, again using one vertical or horizontal line, which one would we choose? The
best choices are horizontal lines at x1 = 8 and x1 = 2.5, as the figure shows.

What we did here was build a decision tree. At every stage, we picked from each of the two fea-
tures (x

0
 and x

1
) and selected the threshold that best splits our data. In fact, in the next subsec-

tion, we use Scikit-Learn to build the same decision tree on this dataset.

	 The graphical boundary of decision trees� 263

Using Scikit-Learn to build a decision tree
In this section, we learn how to use a popular machine learning package called Scikit-Learn
(abbreviated sklearn) to build a decision tree. The code for this section follows:

•	 Notebook: Graphical_example.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/
Graphical_example.ipynb

We begin by loading the dataset as a Pandas DataFrame called dataset (introduced in chapter 8),
with the following lines of code:

import pandas as pd
dataset = pd.DataFrame({
 'x_0':[7,3,2,1,2,4,1,8,6,7,8,9],
 'x_1':[1,2,3,5,6,7,9,10,5,8,4,6],
 'y': [0,0,0,0,0,0,1,1,1,1,1,1]})

Now we separate the features from the labels as shown here:

features = dataset[['x_0', 'x_1']]
labels = dataset['y']

To build the decision tree, we create a DecisionTreeClassifier object and use the fit func-
tion, as follows:

decision_tree = DecisionTreeClassifier()
decision_tree.fit(features, labels)

We obtained the plot of the tree, shown in figure 9.23, using the display_tree function in the
utils.py file.

Figure 9.23  The resulting decision tree of depth 2 that corresponds to the boundary in figure 9.22. It has three
nodes and four leaves.

https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/Graphical_example.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/Graphical_example.ipynb

264	 Chapter 9 I Splitting data by asking questions: Decision trees

Notice that the tree in figure 9.23 corresponds precisely to the boundary in figure 9.22. The root
node corresponds to the first vertical line at x

0
 = 5, with the points at each side of the line corre-

sponding to the two branches. The two horizontal lines at x
1
 = 8.0 and x

1
 = 2.5 on the left and

right halves of the plot correspond to the two branches. Furthermore, at each node we have the
following information:

•	 Gini: the Gini impurity index of the labels at that node

•	 Samples: the number of data points (samples) corresponding to that node

•	 Value: the number of data points of each of the two labels at that node

As you can see, this tree has been trained using the Gini index, which is the default in Scikit-
Learn. To train it using entropy, we can specify it when building the DecisionTree object, as
follows:

decision_tree = DecisionTreeClassifier(criterion='entropy')

We can specify more hyperparameters when training the tree, which we see in the next section
with a much bigger example.

Real-life application: Modeling student
admissions with Scikit-Learn
In this section, we use decision trees to build a model that predicts admission to graduate schools.
The dataset can be found in Kaggle (see appendix C for the link). As in the section “The graphical
boundary of decision trees,” we’ll use Scikit-Learn to train the decision tree and Pandas to han-
dle the dataset. The code for this section follows:

•	 Notebook: University_admissions.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/
University_Admissions.ipynb

•	 Dataset: Admission_Predict.csv

The dataset has the following features:

•	 GRE score: a number out of 340

•	 TOEFL score: a number out of 120

•	 University rating: a number from 1 to 5

•	 Statement of purpose strength (SOP): a number from 1 to 5

•	 Undergraduate grade point average (CGPA): a number from 1 to 10

https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/University_Admissions.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/University_Admissions.ipynb

	 Real-life application: Modeling student admissions with Scikit-Learn� 265

•	 Letter of recommendation strength (LOR): a number from 1 to 5

•	 Research experience: Boolean variable (0 or 1)

The labels on the dataset are the chance of admission, which is a number between 0 and 1. To
have binary labels, we’ll consider every student with a chance of 0.75 or higher as “admitted,” and
any other student as “not admitted.”

The code for loading the dataset into a Pandas DataFrame and performing this preprocessing
step is shown next:

import pandas as pd
data = pd.read_csv('Admission_Predict.csv', index_col=0)
data['Admitted'] = data['Chance of Admit'] >= 0.75
data = data.drop(['Chance of Admit'], axis=1)

The first few rows of the resulting dataset are shown in table 9.5.

Table 9.5  A dataset with 400 students and their scores in standardized tests, grades, university
ratings, letters of recommendations, statements of purpose, and information about their
chances of being admitted to graduate school

GRE score TOEFL score University rating SOP LOR CGPA Research Admitted

337 118 4 4.5 4.5 9.65 1 True

324 107 4 4.0 4.5 8.87 1 True

316 104 3 3.0 3.5 8.00 1 False

322 110 3 3.5 2.5 8.67 1 True

314 103 2 2.0 3.0 8.21 0 False

As we saw in the section “The graphical boundary of decision trees,” Scikit-Learn requires that
we enter the features and the labels separately. We’ll build a Pandas DataFrame called features
containing all the columns except the Admitted column, and a Pandas Series called labels con-
taining only the Admitted column. The code follows:

features = data.drop(['Admitted'], axis=1)
labels = data['Admitted']

Now we create a DecisionTreeClassifier object (which we call dt) and use the fit method.
We’ll train it using the Gini index, as shown next, so there is no need to specify the criterion
hyperparameter, but go ahead and train it with entropy and compare the results with those that
we get here:

from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(features, labels)

266	 Chapter 9 I Splitting data by asking questions: Decision trees

To make predictions, we can use the predict function. For example, here is how we make pre-
dictions for the first five students:

dt.predict(features[0:5])
Output: array([True, True, False, True, False])

However, the decision tree we just trained massively overfits. One way to see this is by using the
score function and realizing that it scores 100% in the training set. In this chapter, we won’t test
the model, but will try building a testing set and verifying that this model overfits. Another way
to see the overfitting is to plot the tree and notice that its depth is 10 (see the notebook). In the
next section, we learn about some hyperparameters that help us prevent overfitting.

Setting hyperparameters in Scikit-Learn
To prevent overfitting, we can use some of the hyperparameters that we learned in the section
“Last step: When to stop building the tree and other hyperparameters,” such as the following:

•	 max_depth: the maximum allowed depth.

•	 max_features: the maximum number of features considered at each split (useful for
when there are too many features, and the training process takes too long).

•	 min_impurity_decrease: the decrease in impurity must be higher than this threshold to
split a node.

•	 min_impurity_split: when the impurity at a node is lower than this threshold, the node
becomes a leaf.

•	 min_samples_leaf: the minimum number of samples required for a leaf node. If a split
leaves a leaf with less than this number of samples, the split is not performed.

•	 min_samples_split: the minimum number of samples required to split a node.

Play around with these parameters to find a good model. We’ll use the following:

•	 max_depth = 3

•	 min_samples_leaf = 10

•	 min_samples_split = 10

dt_smaller = DecisionTreeClassifier(max_depth=3,
min_samples_leaf=10, min_samples_split=10)

dt_smaller.fit(features, labels)

The resulting tree is illustrated in figure 9.24. Note that in this tree, all the edges to the right
correspond to “False” and to the left to “True.”

	 Real-life application: Modeling student admissions with Scikit-Learn� 267

Figure 9.24  A decision tree of depth 3 trained in the student admissions dataset

The prediction given at each of the leaves is the label corresponding to the majority of the nodes
in that leaf. In the notebook, each node has a color assigned to it, ranging from orange to blue.
The orange nodes are those with more points with label 0, and the blue nodes are those with label
1. Notice that the white leaf, in which there are the same number of points with labels 0 and 1.
For this leaf, any prediction has the same performance. In this case, Scikit-Learn defaults to the
first class in the list, which in this case is false.

To make a prediction, we use the predict function. For example, let’s predict the admission
for a student with the following numbers:

•	 GRE score: 320

•	 TOEFL score: 110

•	 University rating: 3

•	 SOP: 4.0

•	 LOR: 3.5

•	 CGPA: 8.9

•	 Research: 0 (no research)

dt_smaller.predict([[320, 110, 3, 4.0, 3.5, 8.9, 0]])
Output: array([True])

The tree predicts that the student will be admitted.
From this tree, we can infer the following things about our dataset:

•	 The most important feature is the sixth column (X
5
), corresponding to the CGPA, or the

grades. The cutoff grade is 8.735 out of 10. In fact, most of the predictions to the right of
the root node are “admit” and to the left are “not admit,” which implies that CGPA is a
very strong feature.

268	 Chapter 9 I Splitting data by asking questions: Decision trees

•	 After this feature, the two most important ones are GRE score (X
0
) and TOEFL score

(X
1
), both standardized tests. In fact, among the students who got good grades, most of

them are likely to be admitted, unless they did poorly on the GRE, as accounted for by
the sixth leaf from the left in the tree in figure 9.24.

•	 Aside from grades and standardized tests, the only other feature appearing in the tree is
SOP, or the strength of the statement of purpose. This is located down in the tree, and it
didn’t change the predictions much.

Recall, however, that the construction of the tree is greedy in nature, namely, at each point it
selects the top feature. This doesn’t guarantee that the choice of features is the best, however. For
example, there could be a combination of features that is very strong, yet none of them is strong
individually, and the tree may not be able to pick this up. Thus, even though we got some infor-
mation about the dataset, we should not yet throw away the features that are not present in the
tree. A good feature selection algorithm, such as L1 regularization, would come in handy when
selecting features in this dataset.

Decision trees for regression
In most of this chapter, we’ve used decision trees for classification, but as was mentioned earlier,
decision trees are good regression models as well. In this section, we see how to build a decision
tree regression model. The code for this section follows:

•	 Notebook: Regression_decision_tree.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/
Regression_decision_tree.ipynb

Consider the following problem: we have an app, and we want to predict the level of engagement
of the users in terms of how many days per week they used it. The only feature we have is the
user’s age. The dataset is shown in table 9.6, and its plot is in figure 9.25.

Table 9.6  A small dataset with eight users, their age, and their engagement with our app.
The engagement is measured in the number of days when they opened the app in one week.

Age Engagement

10 7

20 5

30 7

40 1

50 2

60 1

70 5

80 4

https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/Regression_decision_tree.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_9_Decision_Trees/Regression_decision_tree.ipynb

	 Decision trees for regression� 269

From this dataset, it seems that we have three clusters of users. The young users (ages 10, 20, 30)
use the app a lot, the middle-aged users (ages 40, 50, 60) don’t use it very much, and the older
users (ages 70, 80) use it sometimes. Thus, a prediction like this one would make sense:

•	 If the user is 34 years old or younger, the engagement is 6 days per week.

•	 If the user is between 35 and 64, the engagement is 1 day per week.

•	 If the user is 65 or older, the engagement is 3.5 days per week.

Figure 9.25  The plot of the dataset in table 9.6, where the horizontal axis corresponds to the age of the user
and the vertical axis to the number of days per week that they engaged with the app

The predictions of a regression decision tree look similar to this, because the decision tree splits
our users into groups and predicts a fixed value for each of the groups. The way to split the users
is by using the features, exactly like we did for classification problems.

Lucky for us, the algorithm used for training a regression decision tree is very similar to the
one we used for training a classification decision tree. The only difference is that for classification
trees, we used accuracy, Gini index, or entropy, and for regression trees, we use the mean square
error (MSE). The mean square error may sound familiar—we used it to train linear regression
models in the section “How do we measure our results? The error function” in chapter 3.

Before we get into the algorithm, let’s think about it conceptually. Imagine that you have
to fit a line as close as possible to the dataset in figure 9.25. But there is a catch—the line
must be horizontal. Where should we fit this horizontal line? It makes sense to fit it in the
“middle” of the dataset—in other words, at a height equal to the average of the labels, which
is 4. That is a very simple classification model, which assigns to every point the same predic-
tion of 4.

270	 Chapter 9 I Splitting data by asking questions: Decision trees

Now, let’s go a bit further. If we had to use two horizontal segments, how should we fit them
as close as possible to the data? We might have several guesses, with one being to put a high bar
for the points to the left of 35 and a low bar to the right of 35. That represents a decision stump
that asks the question, “Are you younger than 35?” and assigns predictions based on how the user
answered that question.

What if we could split each of these two horizontal segments into two more—where should we
locate them? We can continue following this process until we have broken down the users into
several groups in which their labels are very similar. We then predict the average label for all the
users in that group.

The process we just followed is the process of training a regression decision tree. Now let’s get
more formal. Recall that when a feature is numerical, we consider all the possible ways to split it.
Thus, the possible ways to split the age feature are using, for example, the following cutoffs: 15,
25, 35, 45, 55, 65, and 75. Each of these cutoffs gives us two smaller datasets, which we call the left
dataset and the right dataset. Now we carry out the following steps:

1.	 For each of the smaller datasets, we predict the average value of the labels.

2.	 We calculate the mean square error of the prediction.

3.	 We select the cutoff that gives us the smallest square error.

For example, if our cutoff is 65, then the two datasets are the following:

•	 Left dataset: users younger than 65. The labels are {7, 5, 7, 1, 2, 1}.

•	 Right dataset: users 65 or older. The labels are {5,4}.

For each dataset, we predict the average of the labels, which is 3.833 for the left one and 4.5 for
the right one. Thus, the prediction for the first six users is 3.833, and for the last two is 4.5. Now,
we calculate the MSE as follows:

MSE =
1

8
[(7 – 3.833)2 + (5 – 3.833)2 + (7 – 3.833)2 + (1 – 3.833)2 + (2 – 3.833)2

+ (1 – 3.833)2 + (5 – 4.5)2 + (4 – 4.5)2]

= 5.167

In table 9.7, we can see the values obtained for each of the possible cutoffs. The full calculations
are at the end of the notebook for this section.

	 Decision trees for regression� 271

Table 9.7  The nine possible ways to split the dataset by age using a cutoff. Each cutoff splits
the dataset into two smaller datasets, and for each of these two, the prediction is given by the
average of the labels. The mean square error (MSE) is calculated as the average of the squares of
the differences between the labels and the prediction. Notice that the splitting with the smallest
MSE is obtained with a cutoff of 35. This gives us the root node in our decision tree.

Cutoff Labels left set Labels right set Prediction left set Prediction right set MSE

0 {} {7,5,7,1,2,1,5,4} None 4.0 5.25

15 {7} {5,7,1,2,1,5,4} 7.0 3.571 3.964

25 {7,5} {7,1,2,1,5,4} 6.0 3.333 3.917

35 {7,5,7} {1,2,1,5,4} 6.333 2.6 1.983

45 {7,5,7,1} {2,1,5,4} 5.0 3.0 4.25

55 {7,5,7,1,2} {1,5,4} 4.4 3.333 4.983

65 {7,5,7,1,2,1} {5,4} 3.833 4.5 5.167

75 {7,5,7,1,2,1,5} {4} 4.0 4.0 5.25

100 {7,5,7,1,2,1,5,4} {} 4.0 none 5.25

The best cutoff is at 35 years old, because it gave us the prediction with the least mean square
error. Thus, we’ve built the first decision node in our regression decision tree. The next steps are
to continue splitting the left and right datasets recursively in the same fashion. Instead of doing
it by hand, we’ll use Scikit-Learn as before.

First, we define our features and labels. We can use arrays for this, as shown next:

features = [[10],[20],[30],[40],[50],[60],[70],[80]]
labels = [7,5,7,1,2,1,5,4]

Now, we build a regression decision tree of maximum depth 2 using the DecisionTreeRegressor
object as follows:

from sklearn.tree import DecisionTreeRegressor
dt_regressor = DecisionTreeRegressor(max_depth=2)
dt_regressor.fit(features, labels)

The resulting decision tree is shown in figure 9.26. The first cutoff is at 35, as we had already
figured out. The next two cutoffs are at 15 and 65. At the right of figure 9.26, we can also see the
predictions for each of these four resulting subsets of the data.

272	 Chapter 9 I Splitting data by asking questions: Decision trees

Figure 9.26  Left: The resulting decision tree obtained in Scikit-Learn. This tree has three decision nodes and
four leaves. Right: The plot of the predictions made by this decision tree. Note that the cutoffs are at ages 35, 15,
and 65, corresponding to the decision nodes in the tree. The predictions are 7, 6, 1.33, and 4.5, corresponding to
the leaves in the tree.

Applications
Decision trees have many useful applications in real life. One special feature of decision trees is
that, aside from predicting, they give us a lot of information about our data, because they orga-
nize it in a hierarchical structure. Many times, this information is of as much or even more value
as the capacity of making predictions. In this section, we see some examples of decision trees
used in real life in the following fields:

•	 Health care

•	 Recommendation systems

Decision trees are widely used in health care
Decision trees are widely used in medicine, not only to make predictions but also to identify
features that are determinant in the prediction. You can imagine that in medicine, a black box
saying “the patient is sick” or “the patient is healthy” is not good enough. However, a decision
tree comes with a great deal of information about why the prediction was made. The patient
could be sick based on their symptoms, family medical history, habits, or many other factors.

Decision trees are useful in recommendation systems
In recommendation systems, decision trees are also useful. One of the most famous recommen-
dation systems problems, the Netflix prize, was won with the help of decision trees. In 2006,
Netflix held a competition that involved building the best possible recommendation system to

	 Summary� 273

predict user ratings of their movies. In 2009, they awarded $1,000,000 USD to the winner, who
improved the Netflix algorithm by over 10%. The way they did this was using gradient-boosted
decision trees to combine more than 500 different models. Other recommendation engines use
decision trees to study the engagement of their users and figure out the demographic features to
best determine engagement.

In chapter 12, we will learn more about gradient-boosted decision trees and random forests.
For now, the best way to imagine them is as a collection of many decision trees working together
to make the best predictions.

Summary
•	 Decision trees are important machine learning models, used for classification and

regression.

•	 The way decision trees work is by asking binary questions about our data and making a
prediction based on the answers to those questions.

•	 The algorithm for building decision trees for classification consists of finding the feature
in our data that best determines the label and iterating over this step.

•	 We have several ways to tell if a feature determines the label best. The three that we
learned in this chapter are accuracy, Gini impurity index, and entropy.

•	 The Gini impurity index measures the purity of a set. In that way, a set in which every
element has the same label has a Gini impurity index of 0. A set in which every element
has a different label has a Gini impurity label close to 1.

•	 Entropy is another measure for the purity of a set. A set in which every element has the
same label has an entropy of 0. A set in which half of the elements have one label and the
other half has another label has an entropy of 1. When building a decision tree, the
difference in entropy before and after a split is called information gain.

•	 The algorithm for building a decision tree for regression is similar to the one used for
classification. The only difference is that we use the mean square error to select the best
feature to split the data.

•	 In two dimensions, regression tree plots look like the union of several horizontal lines,
where each horizontal line is the prediction for the elements in a particular leaf.

•	 Applications of decision trees range very widely, from recommendation algorithms to
applications in medicine and biology.

274	 Chapter 9 I Splitting data by asking questions: Decision trees

Exercises
Exercise 9.1

In the following spam-detection decision tree model, determine whether an email from your
mom with the subject line, “Please go to the store, there’s a sale,” will be classified as spam.

Unknown
sender?

Contains
the word

“sale”

Yes No

Yes No

Spam

Spam Ham

Exercise 9.2

Our goal is to build a decision tree model to determine whether credit card transactions are
fraudulent. We use the dataset of credit card transactions below, with the following features:

•	 Value: value of the transaction.

•	 Approved vendor: the credit card company has a list of approved vendors. This variable
indicates whether the vendor is in this list.

Value Approved vendor Fraudulent

Transaction 1 $100 Not approved Yes

Transaction 2 $100 Approved No

Transaction 3 $10,000 Approved No

Transaction 4 $10,000 Not approved Yes

Transaction 5 $5,000 Approved Yes

Transaction 6 $100 Approved No

Build the first node of the decision tree with the following specifications:

a.	 Using the Gini impurity index

b.	 Using entropy

	 Exercises� 275

Exercise 9.3

A dataset of patients who have tested positive or negative for COVID-19 follows. Their symptoms
are cough (C), fever (F), difficulty breathing (B), and tiredness (T).

Cough (C) Fever (F) Difficulty breathing (B) Tiredness (T) Diagnosis

Patient 1 X X X Sick

Patient 2 X X X Sick

Patient 3 X X X Sick

Patient 4 X X X Sick

Patient 5 X X Healthy

Patient 6 X X Healthy

Patient 7 X Healthy

Patient 8 X Healthy

Using accuracy, build a decision tree of height 1 (a decision stump) that classifies this data. What
is the accuracy of this classifier on the dataset?

277

In this chapter

•	 what is a neural network

•	 the architecture of a neural network: nodes, layers, depth, and

activation functions

•	 training neural networks using backpropagation

•	 potential problems in training neural networks, such as the

vanishing gradient problem and overfitting

•	 techniques to improve neural network training, such as

regularization and dropout

•	 using Keras to train neural networks for sentiment analysis and

image classification

•	 using neural networks as regression models

Combining building blocks to gain more power:
Neural networks 10

278	 Chapter 10 I Combining building blocks to gain more power: Neural networks

Carl has been
tr i y harda ning reall

these days!
Impressive!

In this chapter, we learn neural networks, also called multilayer perceptrons. Neural networks
are one of the most popular (if not the most popular) machine learning models out there. They
are so useful that the field has its own name: deep learning. Deep learning has numerous appli-
cations in the most cutting-edge areas of machine learning, including image recognition, nat-
ural language processing, medicine, and self-driving cars. Neural networks are meant to, in a
broad sense of the word, mimic how the human brain operates. They can be very complex, as
figure 10.1 shows.

Figure 10.1  A neural network. It may look complicated, but in the next few pages, we will demystify this image.

The neural network in figure 10.1 may look scary with lots of nodes, edges, and so on. However,
we can understand neural networks in much simpler ways. One way to see them is as a collection
of perceptrons (which we learned in chapters 5 and 6). I like to see neural networks as composi-
tions of linear classifiers that give rise to nonlinear classifiers. In low dimensions, the linear
classifiers would look like lines or planes, and the nonlinear classifiers would look like compli-
cated curves or surfaces. In this chapter, we discuss the intuition behind neural networks and the
details about how they work, and we also code neural networks and use them for several applica-
tions such as image recognition.

	 Neural networks with an example: A more complicated alien planet� 279

Neural networks are useful for classification and regression. In this chapter, we focus mostly
on classification neural networks, but we also learn the small changes needed to make them work
for regression. First, a bit of terminology. Recall that in chapter 5, we learned the perceptron, and
in chapter 6, we learned the logistic classifier. We also learned that they are called the discrete
and continuous perceptrons. To refresh your memory, the output of the discrete perceptron is
either 0 or 1, and the output of a continuous perceptron is any number in the interval (0,1). To
calculate this output, the discrete perceptron uses the step function (the section “The step func-
tion and activation functions” in chapter 5), and the continuous perceptron uses the sigmoid
function (the section “A probability approach to classification: The sigmoid function” in chapter 6).
In this chapter, we refer to both classifiers as perceptrons, and when needed, we specify whether
we are talking about a discrete or a continuous perceptron.

The code for this chapter is available in this GitHub repository: https://github.com/
luisguiserrano/manning/tree/master/Chapter_10_Neural_Networks.

Neural networks with an example:
A more complicated alien planet
In this section, we learn what a neural network is using a familiar sentiment analysis example
from chapters 5 and 6. The scenario is the following: we find ourselves on a distant planet
populated by aliens. They seem to speak a language formed by two words, aack and beep, and
we want to build a machine learning model that helps us determine whether an alien is happy
or sad based on the words they say. This is called sentiment analysis, because we need to build
a model to analyze the sentiment of the aliens. We record some aliens talking and manage to
identify by other means whether they are happy or sad, and we come up with the dataset
shown in in table 10.1.

Table 10.1  Our dataset, in which each row represents an alien. The first column represents the
sentence they uttered. The second and third columns represent the number of appearances of
each of the words in the sentence. The fourth column represents the alien’s mood.

Sentence Aack Beep Mood

“Aack” 1 0 Sad

“Aack aack” 2 0 Sad

“Beep” 0 1 Sad

“Beep beep” 0 2 Sad

“Aack beep” 1 1 Happy

“Aack aack beep” 2 1 Happy

“Beep aack beep” 1 2 Happy

“Beep aack beep aack” 2 2 Happy

https://github.com/luisguiserrano/manning/tree/master/Chapter_10_Neural_Networks
https://github.com/luisguiserrano/manning/tree/master/Chapter_10_Neural_Networks

280	 Chapter 10 I Combining building blocks to gain more power: Neural networks

This looks like a nice enough dataset, and we should be able to fit a classifier to this data. Let’s
plot it first, as shown in figure 10.2.

2

A
pp

ea
ra

nc
es

 o
fb

e
e

p

1

2

3

Appearances of aack

1 3

Figure 10.2  The plot of the dataset in table 10.1. The horizontal axis corresponds to the number of
appearances of the word aack, and the vertical axis to the number of appearances of the word beep.
The happy faces correspond to the happy aliens, and the sad faces to the sad aliens.

From figure 10.2, it looks like we won’t be able to fit a linear classifier to this data. In other words,
drawing a line that splits the happy and the sad faces apart would be impossible. What can we do?
We’ve learned other classifiers that can do the job, such as the naive Bayes classifier (chapter 8)
or decision trees (chapter 9). But in this chapter, we stick with perceptrons. If our goal is to sepa-
rate the points in figure 10.2, and one line won’t do it, what then is better than one line? What
about the following:

1.	 Two lines

2.	 A curve

These are examples of neural networks. Let’s begin by seeing why the first one, a classifier using
two lines, is a neural network.

Solution: If one line is not enough, use two lines to classify your dataset
In this section, we explore a classifier that uses two lines to split the dataset. We have many ways
to draw two lines to split this dataset, and one of these ways is illustrated in figure 10.3. Let’s call
them line 1 and line 2.

	 Neural networks with an example: A more complicated alien planet � 281

2

A
pp

ea
ra

nc
es

 o
fb

e
e

p

1

2

3

Appearances of aack

Line 2

1 3

Line 1

Figure 10.3  The happy and the sad points in our dataset cannot be divided by one line. However, drawing two
lines separates them well—the points above both lines can be classified as happy, and the remaining points as
sad. Combining linear classifiers this way is the basis for neural networks.

We can define our classifier as follows:

Sentiment analysis classifier

A sentence is classified as happy if its corresponding point is above the two lines shown in
figure 10.3. If it is below at least one of the lines, it is classified as sad.

Now, let’s throw in some math. Can we think of two equations for these lines? Many equations
would work, but let’s use the following two (where x

a
 is the number of times the word aack

appears in the sentence, and x
b
 is the number of times beep appears).

•	 Line 1: 6x
a
 + 10x

b
 – 15 = 0

•	 Line 2: 10x
a
 + 6x

b
 – 15 = 0

aside: How did WE find these equations?  Notice that line 1 passes through the points
(0, 1.5) and (2.5, 0). Therefore, the slope, defined as the change in the horizontal axis divided

by the change in the vertical axis, is precisely
1.5 3

2.5 5

−
= − . The y-intercept—namely, the

height at which the line crosses the vertical axis—is 1.5. Therefore, the equation of this line

is x
b
 = –

3

5
 x

a
 + 1.5. By manipulating this equation, we get 6x

a
 + 10x

b
 – 15 = 0. We can take

a similar approach to find the equation for line 2.

Therefore, our classifier becomes the following:

282	 Chapter 10 I Combining building blocks to gain more power: Neural networks

Sentiment analysis classifier

A sentence is classified as happy if both of the following two inequalities hold:

•	 Inequality 1: 6x
a
 + 10x

b
 – 15 ≥ 0

•	 Inequality 2: 10x
a
 + 6x

b
 – 15 ≥ 0

If at least one of them fails, then the sentence is classified as sad.
As a consistency check, table 10.2 contains the values of each of the two equations. At the right

of each equation, we check whether the equation’s value is larger than or equal to 0. The right-
most column checks whether both values are larger than or equal to 0.

Table 10.2  The same dataset as in table 10.1, but with some new columns. The fourth and the
sixth columns correspond to our two lines. The fifth and seventh column check if the equation
of each of the lines at each of the data points gives a non-negative value. The last column checks
if the two values obtained are both non-negative.

Sentence Aack Beep Equation
1

Equation
1 ≥ 0?

Equation
2

Equation
2 ≥ 0?

Both
equations ≥ 0

“Aack” 1 0 –9 No –5 No No

“Aack aack” 2 0 –3 No 5 Yes No

“Beep” 0 1 –5 No –9 No No

“Beep beep” 0 2 5 Yes 3 No No

“Aack beep” 1 1 1 Yes 1 Yes Yes

“Aack aack
beep”

1 2 11 Yes 7 Yes Yes

“Beep aack
beep”

2 1 7 Yes 11 Yes Yes

“Beep aack
beep aack”

2 2 17 Yes 17 Yes Yes

Note that the right-most column in table 10.2 (yes/no) coincides with the right-most column in
table 10.1 (happy/sad). This means the classifier managed to classify all the data correctly.

Why two lines? Is happiness not linear?
In chapters 5 and 6, we managed to infer things about the language based on the equations of the
classifiers. For example, if the weight of the word aack was positive, we concluded that it was
likely a happy word. What about now? Could we infer anything about the language in this clas-
sifier that contains two equations?

The way we could think of two equations is that maybe on the alien planet, happiness is not a
simple linear thing but is instead based on two things. In real life, happiness can be based on
many things: it can be based on having a fulfilling career combined with a happy family life and
food on the table. It could be based on having coffee and a doughnut. In this case, let’s say that
the two aspects of happiness are career and family. For an alien to be happy, it needs to have both.

	 Neural networks with an example: A more complicated alien planet � 283

It turns out that in this case, both career happiness and family happiness are simple linear
classifiers, and each is described by one of the two lines. Let’s say that line 1 corresponds to career
happiness and line 2 to family happiness. Thus, we can think of alien happiness as the diagram
in figure 10.4. In this diagram, career happiness and family happiness are joined by an AND
operator, which checks whether both are true. If they are, then the alien is happy. If any of them
fails, the alien is unhappy.

Career
happiness

Family
happiness

HappinessAND

Career happiness Family happinessAND Happiness

Figure 10.4  The happiness classifier is formed by the career happiness classifier, the family happiness classifier,
and an AND operator. If both the career and family happiness classifiers output a Yes, then so does the happiness
classifier. If any of them outputs a No, then the happiness classifier also outputs a No.

The family and career happiness classifiers are both perceptrons, because they are given by the
equation of a line. Can we turn this AND operator into another perceptron? The answer is yes,
and we’ll see how in the next subsection.

Figure 10.4 is starting to look like a neural network. Just a few more steps and a little bit more math,
and we’ll get to something looking much more like figure 10.1 at the beginning of the chapter.

Combining the outputs of perceptrons into another perceptron
Figure 10.4 hints at a combination of perceptrons, in which we plug in the outputs of two percep-
trons as inputs into a third perceptron. This is how neural networks are built, and in this section,
we see the math behind it.

In the section “The step function and activation functions” in chapter 5, we defined the step
function, which returns 0 if the input is negative and 1 if the input is positive or zero. Notice that
because we are using the step function, these are discrete perceptrons. Using this function, we can
define the family and career happiness classifiers as follows:

Career happiness classifier

Weights:

•	 Aack: 6

•	 Beep: 10

284	 Chapter 10 I Combining building blocks to gain more power: Neural networks

Bias: –15

Score of a sentence: 6x
a
 + 10x

b
 – 15

Prediction: F = step(6x
a
 + 10x

b
 – 15)

Family happiness classifier

Weights:

•	 Aack: 10

•	 Beep: 6

Bias: –15

Score of a sentence: 10x
a
+6x

b
 – 15

Prediction: C = step(10x
a
+6x

b
 – 15)

The next step is to plug the outputs of the career and family happiness classifiers into a new
happiness classifier. Try verifying that the following classifier works. Figure 10.5 contains two
tables with the outputs of the career and family classifiers, and a third table in which the first
two columns are the inputs and the outputs of the career and family classifier, and the last
column is the output of the family classifier. Each of the tables in figure 10.5 corresponds to a
perceptron.

1

Career classifier Family classifier Happiness classifier

0

2 0

0 1

0 2

1 1

1 2

2 1

2 2

–9 0

–3 0

–5 0

5 1

1 1

11 1

7 1

17 1

1 0 –5 0

2 0 5 1

0 1 –9 0

0 2 3 0

1 1 1 1

1 2 7 1

2 1 11 1

2 2 17 1

0 0 –1.5 0

C F

0 1 –0.5 0

0 0 –0.5 0

1 0 –0.5 0

1 1 0.5 1

1 1 0.5 1

1 1 0.5 1

1 1 0.5 1

Figure 10.5  Three perceptron classifiers, one for career happiness, one for family happiness, and one for
happiness, which combines the two previous ones. The outputs of the career and family perceptrons are inputs
into the happiness perceptron.

	 Neural networks with an example: A more complicated alien planet � 285

Happiness classifier

Weights:

•	 Career: 1

•	 Family: 1

Bias: –1.5

Score of a sentence: 1 · C + 1 · F – 1.5

Prediction: ŷ = step(1 · C + 1 · F – 1.5)

This combination of classifiers is a neural network. Next, we see how to make this look like the
image in figure 10.1.

A graphical representation of perceptrons
In this section, I show you how to represent perceptrons graphically, which gives rise to the
graphical representation of neural networks. We call them neural networks because their basic
unit, the perceptron, vaguely resembles a neuron.

A neuron comprises three main parts: the soma, the dendrites, and the axon. In broad terms,
the neuron receives signals coming from other neurons through the dendrites, processes them in
the soma, and sends a signal through the axon to be received by other neurons. Compare this to
a perceptron, which receives numbers as inputs, applies a mathematical operation to them (nor-
mally consisting of a sum composed with an activation function), and outputs a new number.
This process is illustrated in figure 10.6.

Neuron Perceptron

Output
(number)

Inputs
(numbers)

Mathematical
operation

Dendrites

Axon

Soma

Figure 10.6  A perceptron is loosely based on a neuron. Left: A neuron with its main components: the dendrites,
the soma, and the axon. Signals come in through the dendrites, get processed in the soma, and get sent to other
neurons through the axon. Right: A perceptron. The nodes in the left correspond to numerical inputs, the node
in the middle performs a mathematical operation and outputs a number.

286	 Chapter 10 I Combining building blocks to gain more power: Neural networks

More formally, recall the definition of a perceptron from chapters 5 and 6, in which we had the
following entities:

•	 Inputs: x
1
, x

2
, …, x

n

•	 Weights: w
1
, w

2
, …, w

n

•	 Bias: b

•	 An activation function: Either the step function (for discrete perceptrons) or the sigmoid
function (for continuous perceptrons). (Later in this chapter we learn other new
activation functions.)

•	 A prediction: Defined by the formula ŷ = f(w
1
 x

1
+ w

2
 x

2
+ … + w

n
 x

n
+ b), where f is the

corresponding activation function

The way these are located in the diagram is illustrated in figure 10.7. On the left, we have the
input nodes, and on the right, we have the output node. The input variables go on the input
nodes. The final input node doesn’t contain a variable, but it contains a value of 1. The weights
are located on the edges connecting the input nodes with the output node. The weight corre-
sponding to the final input node is the bias. The mathematical operations for calculating the
prediction happen inside the output node, and this node outputs the prediction.

For example, the perceptron defined by the equation ŷ = s(3x
1
– 2x

2
+ 4x

3
+ 2) is illustrated in

figure 10.7. Notice that in this perceptron, the following steps are performed:

•	 The inputs are multiplied with their corresponding weights and added to obtain 3x
1
– 2x

2
+ 4x

3
.

•	 The bias is added to the previous equation, to obtain 3x
1
– 2x

2
+ 4x

3
+ 2.

•	 The sigmoid activation function is applied to obtain the output ŷ = s(3x
1
– 2x

2
+ 4x

3
+ 2).

1

Output

Inputs Weights

Activation
function

Bias

2

4

–2

3

Figure 10.7  A visual representation of a perceptron. The inputs (features and bias) appear as nodes on the
left, and the weights and bias are on the edges connecting the input nodes to the main node in the middle. The
node in the middle takes the linear combination of the weights and the inputs, adds the bias, and applies the
activation function, which in this case is the sigmoid function. The output is the prediction given by the formula
ŷ = σ(3x1 – 2x2 + 4x3 + 2).

	 Neural networks with an example: A more complicated alien planet � 287

For example, if the input to this perceptron is the point (x
1
, x

2
, x

3
) = (1, 3, 1), then the output is

s(3 · 1 – 2 · 3 + 4 · 1 + 2) = s(3) = 0.953.
If this perceptron was defined using the step function instead of the sigmoid function, the

output would be step(3 · 1 – 2 · 3 + 4 · 1 + 2) = step(3) = 1.
This graphical representation makes perceptrons easy to concatenate, as we see in the next

section.

A graphical representation of neural networks
As we saw in the previous section, a neural network is a concatenation of perceptrons. This struc-
ture is meant to loosely emulate the human brain, in which the output of several neurons becomes
the input to another neuron. In the same way, in a neural network, the output of several percep-
trons becomes the input of another perceptron, as illustrated in figure 10.8.

Figure 10.8  Neural networks are meant to (loosely) emulate the structure of the brain. Left: The neurons
are connected inside the brain in a way that the output of a neuron becomes the input to another neuron.
Right: The perceptrons are connected in a way that the output of a perceptron becomes the input to another
perceptron.

The neural network we built in the previous section, in which we concatenate the career percep-
tron and the family perceptron with the happiness perceptron, is illustrated in figure 10.9.

Notice that in the diagram in figure 10.9, the inputs to the career and family perceptrons are
repeated. A cleaner way to write this, in which these inputs don’t get repeated, is illustrated in
figure 10.10.

Notice that these three perceptrons use the step function. We did this only for educational
purposes, because in real life, neural networks never use the step function as an activation func-
tion, because it makes it impossible for us to use gradient descent (more on this in the section
“Training neural networks”). The sigmoid function, however, is widely used in neural networks,
and in the section “Different activation functions,” we learn some other useful activation func-
tions used in practice.

288	 Chapter 10 I Combining building blocks to gain more power: Neural networks

1

1

1

Career
perceptron

Family
perceptron

Happiness
perceptron

̂

–15

10

6

–15

10

6

–1.5

1

1

Figure 10.9  When we connect the outputs of the career and family perceptrons into the happiness perceptron,
we get a neural network. This neural network uses the step function as an activation function.

1 1

–15 –1.5

1

1

–15

6

6

10

10

Figure 10.10  A cleaned-up version of the diagram in figure 10.9. In this diagram, the features xa and xb, and the
bias are not repeated. Instead, each of them connects to both of the nodes at the right, nicely combining the
three perceptrons into the same diagram.

	 Neural networks with an example: A more complicated alien planet � 289

The boundary of a neural network
In chapters 5 and 6, we studied the boundaries of perceptrons, which are given by lines. In this
section, we see what the boundaries of neural networks look like.

Recall from chapters 5 and 6 that both the discrete perceptron and the continuous perceptron
(logistic classifier) have a linear boundary given by the linear equation defining them. The discrete
perceptron assigns predictions of 0 and 1 to the points according to what side of the line they are.
The continuous perceptron assigns a prediction between 0 and 1 to every point in the plane. The
points over the line get a prediction of 0.5, the points on one side of the line get predictions higher
than 0.5, and the points on the other side get predictions lower than 0.5. Figure 10.11 illustrates the
discrete and continuous perceptrons corresponding to the equation 10x

a
 + 6x

b
 – 15 = 0.

10

Line with equation

0.5

> 0.5

< 0.5

Figure 10.11  The boundary of a perceptron is a line. Left: For a discrete perceptron, the points on one side of
the line are given a prediction of 0, and the points on the other side a prediction of 1. Right: For a continuous
perceptron, the points are all given a prediction in the interval (0,1). In this example, the points at the very
left get predictions close to 0, those at the very right get predictions close to 1, and those over the line get
predictions of 0.5.

We can also visualize the output of a neural network in a similar way. Recall that the output of
the neural network with the step activation function is the following:

•	 If 6x
a
+ 10x

b
 – 15 ≥ 0 and 10x

a
 + 6x

b
 – 15 ≥ 0, then the output is 1.

•	 Otherwise, the output is 0.

This boundary is illustrated in the left side of figure 10.12 using two lines. Notice that it’s
expressed as a combination of the boundaries of the two input perceptrons and the bias node.
The boundary obtained with the step activation function is made by broken lines, whereas the
one obtained with the sigmoid activation function is a curve.

To study these boundaries more carefully, check the following notebook: https://github.com/
luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/Plotting_Boundaries
.ipynb. In this notebook, the boundaries of the two lines and the two neural networks are plotted
with the step and sigmoid activation functions, as illustrated in figure 10.13.

https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/Plotting_Boundaries.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/Plotting_Boundaries.ipynb

290	 Chapter 10 I Combining building blocks to gain more power: Neural networks

10

1

0

1

1

1

0
1

–1.5

With the step activation function With the sigmoid activation function

> 0.5

< 0.5

> 0.5

< 0.5

> 0.5

< 0.5

1

1

–1.5

1

Figure 10.12  To build a neural network, we use the outputs of two perceptrons and a bias node (represented
by a classifier that always outputs a value of 1) to a third perceptron. The boundary of the resulting classifier is a
combination of the boundaries of the input classifiers. On the left, we see the boundary obtained using the step
function, which is a broken line. On the right, we see the boundary obtained using the sigmoid function, which
is a curve.

Figure 10.13  The plots of the boundaries of the classifiers. Top: The two linear classifiers, the career (left)
and family (right) classifiers. Bottom: The two neural networks, using the step function (left) and the sigmoid
function (right).

	 Neural networks with an example: A more complicated alien planet � 291

Note that the neural network with the sigmoid activation function actually doesn’t fit the entire
dataset well, because it misclassifies the point (1,1), as shown in the bottom right of figure 10.13.
Try changing the weights in a way that it fits this point well. (See exercise 10.3 at the end of the
chapter.)

The general architecture of a fully connected neural network
In the previous sections, we saw an example of a small neural network, but in real life, neural
networks are much larger. The nodes are arranged in layers, as illustrated in figure 10.14.
The first layer is the input layer, the final layer is the output layer, and all the layers in
between are called the hidden layers. The arrangement of nodes and layers is called the
architecture of the neural network. The number of layers (excluding the input layer) is called
the depth of the neural network. The neural network in figure 10.14 has a depth of 3, and the
following architecture:

•	 An input layer of size 4

•	 A hidden layer of size 5

•	 A hidden layer of size 3

•	 An output layer of size 1

Input
layer

Hidden
layer

Hidden
layer

Output
layer

1 1 1

Figure 10.14  The general architecture of a neural network. The nodes are divided into layers, where the
leftmost layer is the input layer, the rightmost layer is the output layer, and all the layers in between are hidden
layers. All the nodes in a layer are connected to all the (non-bias) nodes in the next layer.

292	 Chapter 10 I Combining building blocks to gain more power: Neural networks

Neural networks are often drawn without the bias nodes, but it is assumed they are part of the
architecture. However, we don’t count bias nodes in the architecture. In other words, the size of
a layer is the number of non-bias nodes in that layer.

Notice that in the neural network in figure 10.14, every node in a layer is connected to every
(non-bias) node in the next layer. Furthermore, no connections happen between nonconsecutive
layers. This architecture is called fully connected. For some applications, we use different archi-
tectures where not all the connections are there, or where some nodes are connected between non-
consecutive layers—see the section “Other architectures for more complex dialects” to read about
some of them. However, in this chapter, all the neural networks we build are fully connected.

Picture the boundary of a neural network like the one shown in figure 10.15. In this diagram,
you can see the classifier corresponding to each node. Notice that the first hidden layer is formed
by linear classifiers, and the classifiers in each successive layer are slightly more complex than
those in the previous ones.

Figure 10.15  The way I like to visualize neural networks. Each of the nodes corresponds to a classifier, and
this classifier has a well-defined boundary. The nodes in the first hidden layer all correspond to linear classifiers
(perceptrons), so they are drawn as lines. The boundaries of the nodes in each layer are formed by combining
the boundaries from the previous layer. Therefore, the boundaries get more and more complex in each hidden
layer. In this diagram, we have removed the bias nodes.

A great tool to play with to understand neural networks is TensorFlow Playground, which can be
found at https://playground.tensorflow.org. Several graphical datasets are available there, and it
is possible to train neural networks with different architectures and hyperparameters.

Training neural networks
In this chapter, we’ve seen how neural networks look in general and that they’re not as mysteri-
ous as they sound. How do we train one of these monsters? In theory, the process is not compli-
cated, although it can be computationally expensive. We have several tricks and heuristics we can
use to speed it up. In this section, we learn this training process. Training a neural network is not

https://playground.tensorflow.org/

	 Training neural networks� 293

that different from training other models, such as the perceptron or the logistic classifier. We
begin by initializing all the weights and biases at random. Next, we define an error function to
measure the performance of the neural network. Finally, we repeatedly use the error function
to tune in the weights and biases of the model to reduce the error function.

Error function: A way to measure how the neural network is performing
In this section, we learn about the error function used to train neural networks. Luckily, we’ve
seen this function before—the log-loss function from the section “Logistic classifiers” in chapter 6.
Recall that the formula for the log loss is

log loss = –y ln(ŷ) – (1 – y) ln(1 – ŷ),

where y is the label and ŷ the prediction.
As a refresher, a good reason for using log loss for classification problems is that it returns a

small value when the prediction and the label are close and a large value when they are far.

Backpropagation: The key step in training the neural network
In this section, we learn the most important step in the process of training a neural network.
Recall that in chapters 3, 5, and 6 (linear regression, perceptron algorithm, and logistic regres-
sion), we used gradient descent to train our models. This is also the case for neural networks. The
training algorithm is called the backpropagation algorithm, and its pseudocode follows:

Pseudocode for the backpropagation algorithm

•	 Initialize the neural network with random weights and biases.

•	 Repeat many times:

	– Calculate the loss function and its gradient (namely, the derivatives with respect to
each one of the weights and biases).

	– Take a small step in the direction opposite to the gradient to decrease the loss
function by a small amount.

•	 The weights you obtain correspond to a neural network that (likely) fits the data well.

The loss function of a neural network is complicated, because it involves the logarithm of the
prediction, and the prediction itself is a complicated function. Furthermore, we need to calculate
the derivative with respect to many variables, corresponding to each of the weights and biases of
the neural network. In appendix B, “Using gradient descent to train neural networks,” we go over
the mathematical details of the backpropagation algorithm for a neural network with one hidden
layer or arbitrary size. See some recommended resources in appendix C to go deep into the math
of backpropagation for deeper neural networks. In practice, great packages, such as Keras,
TensorFlow, and PyTorch, have implemented this algorithm with great speed and performance.

Recall that when we learned linear regression models (chapter 3), discrete perceptrons
(chapter 5), and continuous perceptrons (chapter 6), the process always had a step where we
moved a line in the way we needed to model our data well. This type of geometry is harder

294	 Chapter 10 I Combining building blocks to gain more power: Neural networks

to visualize for neural networks, because it happens in much higher dimensions. However, we
can still form a mental picture of backpropagation, and for this, we need to focus on only one of
the nodes of the neural network and one data point. Imagine a classifier like the one on the right
in figure 10.16. This classifier is obtained from the three classifiers on the left (the bottom one
corresponds to the bias, which we represent by a classifier that always returns a prediction of 1).
The resulting classifier misclassifies the point, as is shown. From the three input classifiers, the
first one classifies the point well, but the other two don’t. Thus, the backpropagation step will
increase the weight on the edge corresponding to the top classifier and decrease those corre-
sponding to the two classifiers at the bottom. This ensures the resulting classifier will look more
like the top one, and thus, its classification for the point will improve.

Poorly classified

Well classified

Poorly classified

Poorly classified

Good classifier

Bad classifier

Bad classifier

Increase

Decrease

Decrease

Figure 10.16  A mental picture of backpropagation. At each step of the training process, the weights of the
edges are updated. If a classifier is good, its weight gets increased by a small amount, and if it is bad, its weight
gets decreased.

Potential problems: From overfitting to vanishing gradients
In practice, neural networks work very well. But, due to their complexity, many problems arise
with their training. Luckily, we can have a solution for the most pressing ones. One problem that
neural networks have is overfitting—really big architectures can potentially memorize our data
without generalizing it well. In the next section, we see some techniques to reduce overfitting
when training neural networks.

Another serious problem that neural networks can have is vanishing gradients. Notice that the
sigmoid function is very flat on the ends, which signifies that the derivatives (tangents to the
curve) are too flat (see figure 10.17). This means their slopes are very close to zero.

	 Training neural networks� 295

Large derivative (good)

Derivatives too
close to zero (bad)

Figure 10.17  The sigmoid function is flat at the ends, which means that for large positive and negative values,
its derivative is very small, hampering the training.

During the backpropagation process, we compose many of these sigmoid functions (which
means we plug in the output of a sigmoid function as the input to another sigmoid function
repeatedly). As expected, this composition results in derivatives that are very close to zero, which
means the steps taken during backpropagation are tiny. If this is the case, it may take us a very
long time to get to a good classifier, which is a problem.

We have several solutions to the vanishing gradient problem, and so far one of the most effec-
tive ones is to change the activation function. In the section “Different activation functions,” we
learn some new activation functions to help us deal with the vanishing gradient problem.

Techniques for training neural networks: Regularization and dropout
As mentioned in the previous section, neural networks are prone to overfitting. In this section,
we discuss some techniques to decrease the amount of overfitting during the training of neural
networks.

How do we pick the correct architecture? This is a difficult question, with no concrete answer.
The rule of thumb is to err on the side of picking a larger architecture than we may need and then
apply techniques to reduce the amount of overfitting that your network may have. In some way
it is like picking a pair of pants, where the only choices you have are too small or too big. If we
pick pants that are too small, there is not much we can do. On the other hand, if we pick pants
that are too big, we can wear a belt to make them fit better. It’s not ideal, but it’s all we have for
now. Picking the correct architecture based on the dataset is a complicated problem, and a lot of
research is currently being done in this direction. To learn more about this, check out the resources
in appendix C.

Regularization: A way to reduce overfitting by punishing higher weights

As we learned in chapter 4, we can use L1 and L2 regularization to decrease overfitting in regres-
sion and classification models, and neural networks are no exception. The way one applies regu-
larization in neural networks is the same as one would apply it in linear regression—by adding a

296	 Chapter 10 I Combining building blocks to gain more power: Neural networks

regularization term to the error function. If we are doing L1 regularization, the regularization
term is equal to the regularization parameter (l) times the sum of the absolute values of all the
weights of our model (not including the biases). If we are doing L2 regularization, then we take
the sum of squares instead of absolute values. As an example, the L2 regularization error of the
neural network in the example in the section “Neural networks with an example” is

log loss + l · (62 + 102 + 102 + 62 + 12 + 12) = log loss + 274l.

Dropout: Making sure a few strong nodes are not dominating the training

Dropout is an interesting technique used to reduce overfitting in neural networks, and to
understand it, let’s consider the following analogy: imagine that we are right-handed, and we
like to go to the gym. After some time, we start noticing that our right bicep is growing a lot,
but our left one is not. We then start paying more attention to our training and realize that
because we are right-handed, we tend to always pick up the weights with the right arm, and
we’re not allowing the left arm to do much exercise. We decide that enough is enough, so we
take a drastic measure. Some days we decide to tie our right hand to our back and force our-
selves to do the entire routine without using the right arm. After this, we start seeing that the
left arm starts to grow, as desired. Now, to get both arms to work, we do the following: every
day before heading to the gym, we f lip two coins, one for each arm. If the left coin falls on
heads, we tie the left arm to our back, and if the right arm falls on heads, we tie the right arm
to our back. Some days we’ll work with both arms, some days with only one, and some days
with none (those are leg days, perhaps). The randomness of the coins will make sure that, on
average, we are working both arms almost equally.

Dropout uses this logic, except instead of arms, we are training the weights in the neural net-
work. When a neural network has too many nodes, some of the nodes pick up patterns in the
data that are useful for making good predictions, whereas other nodes pick up patterns that are
noisy or irrelevant. The dropout process removes some of the nodes randomly at every epoch and
performs one gradient descent step on the remaining ones. By dropping some of the nodes at
each epoch, it is likely that sometimes we may drop the ones that have picked up the useful pat-
terns, thus forcing the other nodes to pick up the slack.

To be more specific, the dropout process attaches a small probability p to each of the neurons.
In each epoch of the training process, each neuron is removed with probability p, and the neural
network is trained only with the remaining ones. Dropout is used only on the hidden layers, not
on the input or output layers. The dropout process is illustrated in figure 10.18, where some neu-
rons are removed in each of four epochs of training.

Dropout has had great success in the practice, and I encourage you to use it every time you
train a neural network. The packages that we use for training neural networks make it easy to
use, as we’ll see later in this chapter.

	 Training neural networks� 297

x

x

x

x

x

x

x

x

x

x

Epoch 1 Epoch 2

Epoch 3 Epoch 4

Figure 10.18  The dropout process. At different epochs, we pick random nodes to remove from the training
to give all the nodes an opportunity to update their weights and not have a few single nodes dominating the
training.

Different activation functions: Hyperbolic tangent (tanh) and the rectified
linear unit (ReLU)
As we saw in the section “Potential problems,” the sigmoid function is a bit too flat, which causes
problems with vanishing gradients. A solution to this problem is to use different activation func-
tions. In this section, we cover two different activation functions that are crucial to improve our
training process: the hyperbolic tangent (tanh) and the rectified linear unit (ReLU)

Hyperbolic tangent (tanh)

The hyperbolic tangent function tends to work better than the sigmoid function in practice, due
to its shape, and is given by the following formula:

()
tanh

x x

x x

e e
x

e e

−

−

−
=

+

Tanh is a bit less flat than sigmoid, but it still has a similar shape, as is shown in figure 10.19. It
provides an improvement over sigmoid, but it still suffers from the vanishing gradient problem.

298	 Chapter 10 I Combining building blocks to gain more power: Neural networks

1

0

Sigmoid
()

Hyperbolic tangent
(tanh)

0

Rectified linear unit
(ReLU)

1

–1

Figure 10.19  Three different activation functions used in neural networks. Left: The sigmoid function,
represented by the Greek letter sigma. Middle: The hyperbolic tangent, or tanh. Right: The rectified linear
unit, or ReLU.

Rectified linear unit (ReLU)

A much more popular activation that is commonly used in neural networks is the rectified linear
unit, or ReLU. This one is simple: if the input is negative, the output is zero; otherwise, the output
is equal to the input. In other words, it leaves nonnegative numbers alone and turns all the neg-
ative numbers into zero. For x ≥ 0, ReLU(x) = x, and for x < 0, ReLU(x) = 0. ReLU is a good
solution to the vanishing gradient problem, because its derivative is 1 when the input is positive,
and thus, it is widely used in large neural networks.

The great thing about these activation functions is that we can combine different ones in the
same neural network. In one of the most common architectures, every node uses the ReLU acti-
vation function except for the last one, which uses the sigmoid. The reason for this sigmoid at the
end is that if our problem is a classification problem, the output of the neural network must be
between 0 and 1.

Neural networks with more than one output: The softmax function
So far, the neural networks we’ve worked with have had only one output. However, it is not hard to
build a neural network that produces several outputs using the softmax function that we learned in
the section “Classifying into multiple classes: The softmax function” in chapter 6. The softmax func-
tion is a multivariate extension of the sigmoid, and we can use it to turn scores into probabilities.

The best way to illustrate the softmax function is with an example. Imagine that we have a neu-
ral network whose job is to determine whether an image contains an aardvark, a bird, a cat, or a
dog. In the final layer, we have four nodes, one corresponding to each animal. Instead of applying
the sigmoid function to the scores coming from the previous layer, we apply the softmax function
to all of them. For example, if the scores are 0, 3, 1, and 1, softmax returns the following:

•	 Probability(aardvark) =
0

0 3 1 1
0.0377

e

e e e e
=

+ + +

•	 Probability(bird) =
3

0 3 1 1
0.7573

e

e e e e
=

+ + +

	 Coding neural networks in Keras� 299

•	 Probability(cat) =
1

0 3 1 1
0.1025

e

e e e e
=

+ + +

•	 Probability(dog) =
1

0 3 1 1
0.1025

e

e e e e
=

+ + +

These results indicate that the neural network strongly believes that the image corresponds to a
bird.

Hyperparameters
Like most machine learning algorithms, neural networks use many hyperparameters that we can
fine-tune to get them to work better. These hyperparameters determine how we do our training,
namely, how long we want the process to go, at what speed, and how we choose to enter our data
into the model. Some of the most important hyperparameters in neural networks follow:

•	 Learning rate h: the size of the step that we use during our training

•	 Number of epochs: the number of steps we use for our training

•	 Batch vs. mini-batch vs. stochastic gradient descent: how many points at a time enter
the training process—namely, do we enter the points one by one, in batches, or all at the
same time?

•	 Architecture:

	– The number of layers in the neural network

	– The number of nodes per layer

	– The activation functions used in each node

•	 Regularization parameters:

	– L1 or L2 regularization

	– The regularization term l

•	 Dropout probability p

We tune these hyperparameters in the same way we tune them for other algorithms, using methods
such as grid search. In chapter 13, we elaborate on these methods more with a real-life example.

Coding neural networks in Keras
Now that we learned the theory behind neural networks, it’s time to put them in practice! Many
great packages have been written for neural networks, such as Keras, TensorFlow, and PyTorch.
These three are powerful, and in this chapter, we’ll use Keras due to its simplicity. We’ll build two
neural networks for two different datasets. The first dataset contains points with two features

300	 Chapter 10 I Combining building blocks to gain more power: Neural networks

and labels of 0 and 1. The dataset is two-dimensional, so we’ll be able to look at the nonlinear
boundary created by the model. The second dataset is a common dataset used in image recogni-
tion called the MNIST (Modified National Institute of Standards and Technology) dataset. The
MNIST dataset contains handwritten digits that we can classify using a neural network.

A graphical example in two dimensions
In this section, we’ll train a neural network in Keras on the dataset shown in figure 10.20. The
dataset contains two labels, 0 and 1. The points with label 0 are drawn as squares, and those with
label 1 are drawn as triangles. Notice that the points with label 1 are located mostly at the center,
whereas the points with label 0 are located on the sides. For this type of dataset, we need a classi-
fier with a nonlinear boundary, which makes it a good example for a neural network. The code
for this section follows:

•	 Notebook: Graphical_example.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_
Networks/Graphical_example.ipynb

•	 Dataset: one_circle.csv

Figure 10.20  Neural networks are great for nonlinearly separable sets. To test this, we’ll train a neural network
on this circular dataset.

Before we train the model, let’s look at some random rows in our data. The input will be called x,
with features x_1 and x_2, and the output will be called y. Table 10.3 has some sample data
points. The dataset has 110 rows.

https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/Graphical_example.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/Graphical_example.ipynb

	 Coding neural networks in Keras� 301

Table 10.3  The dataset with 110 rows, two features, and labels of 0 and 1

x_1 x_2 y

–0.759416 2.753240 0

–1.885278 1.629527 0

...

0.729767 –2.479655 1

–1.715920 –0.393404 1

Before we build and train the neural networks, we must do some data preprocessing.

Categorizing our data: Turning nonbinary features into binary ones

In this dataset, the output is a number between 0 and 1, but it represents two classes. In Keras, it
is recommended to categorize this type of output. This simply means that points with label 0 will
now have a label [1,0], and points with label 1 will now have a label [0,1]. We do this using the
to_categorical function as follows:

from tensorflow.keras.utils import to_categorical
categorized_y = np.array(to_categorical(y, 2))

The new labels are called categorized_y.

The architecture of the neural network

In this section, we build the architecture of the neural network for this dataset. Deciding which
architecture to use is not an exact science, but it is normally recommended to go a little bigger
rather than a little smaller. For this dataset, we’ll use the following architecture with two hidden
layers (figure 10.21):

•	 Input layer

	– Size: 2

•	 First hidden layer

	– Size:128

	– Activation function: ReLU

•	 Second hidden layer

	– Size: 64

	– Activation function: ReLU

•	 Output layer

	– Size: 2

	– Activation function: softmax

302	 Chapter 10 I Combining building blocks to gain more power: Neural networks

Input layer
(2 nodes)

Hidden layer
(128 nodes)

Hidden layer
(64 nodes)

Output layer
(2 nodes)

ReLU Softmax

Figure 10.21  The architecture that we will use to classify our dataset. It contains two hidden layers: one of
128 and one of 64 nodes. The activation function between them is a ReLU, and the final activation function is a
softmax.

Furthermore, we’ll add dropout layers between our hidden layers with a dropout probability of
0.2, to prevent overfitting.

Building the model in Keras

Building the neural network takes only a few lines of code in Keras. First we import the
necessary packages and functions as follows:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation

Now, on to define the model with the architecture that we have defined in the previous subsec-
tion. First, we define the model with the following line:

model = Sequential()
Defines
the model

Adds the first hidden layer
with a ReLU activation function

model.add(Dense(128, activation='relu', input_shape=(2,)))
model.add(Dropout(.2)) Adds a dropout with

a probability of 0.2
model.add(Dense(64, activation='relu'))

Adds the second hidden
layer with a ReLU
activation function

model.add(Dropout(.2))
model.add(Dense(2, activation='softmax'))

 Adds the output layer
with a softmax

activation function

Once the model is defined, we can compile it, as shown here:

model.compile(loss = 'categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

	 Coding neural networks in Keras� 303

The parameters in the compile function follow:

•	 loss = 'categorical_crossentropy': this is the loss function, which we have defined
as the log loss. Because our labels have more than one column, we need to use the
multivariate version for the log loss function, called categorical cross-entropy.

•	 optimizer = 'adam': packages like Keras have many built-in tricks that help us train a
model in an optimal way. It’s always a good idea to add an optimizer to our training.
Some of the best ones are Adam, SGD, RMSProp, and AdaGrad. Try this same training
with other optimizers, and see how they do.

•	 metrics = ['accuracy']: As the training goes, we get reports on how the model is
doing at each epoch. This flag allows us to define what metrics we want to see during the
training, and for this example, we’ve picked the accuracy.

When we run the code, we get a summary of the architecture and number of parameters, as
follows:

Model: "sequential"

Layer (type) Output Shape Param #
===
dense (Dense) (None, 128) 384

dropout (Dropout) (None, 128) 0

dense_1 (Dense) (None, 64) 8256

dropout_1 (Dropout) (None, 64) 0

dense_2 (Dense) (None, 2) 130
===
Total params: 8,770
Trainable params: 8,770
Non-trainable params: 0

Each row in the previous output is a layer (dropout layers are treated as separate layers for descrip-
tion purposes). The columns correspond to the type of the layer, the shape (number of nodes),
and the number of parameters, which is precisely the number of weights plus the number of
biases. This model has a total of 8,770 trainable parameters.

Training the model

For training, one simple line of code suffices, shown next:

model.fit(x, categorized_y, epochs=100, batch_size=10)

304	 Chapter 10 I Combining building blocks to gain more power: Neural networks

Let’s examine each of the inputs to this fit function.

•	 x and categorized_y: the features and labels, respectively.

•	 epochs: the number of times we run backpropagation on our whole dataset. Here we do
it 100 times.

•	 batch_size: the length of the batches that we use to train our model. Here we are
introducing our data to the model in batches of 10. For a small dataset like this one, we
don’t need to input it in batches, but in this example, we are doing it for exposure.

As the model trains, it outputs some information at each epoch, namely, the loss (error function)
and the accuracy. For contrast, notice next how the first epoch has a high loss and a low accuracy,
whereas the last epoch has much better results in both metrics:

Epoch 1/100
11/11 [==============================] - 0s 2ms/step - loss: 0.5473 -

accuracy: 0.7182
...
Epoch 100/100
11/11 [==============================] - 0s 2ms/step - loss: 0.2110 -

accuracy: 0.9000

The final accuracy of the model on the training is 0.9. This is good, although remember that
accuracy must be calculated in the testing set instead. I won’t do it here, but try splitting the
dataset into a training and a testing set and retraining this neural network to see what testing
accuracy you obtain. Figure 10.22 shows the plot of the boundary of the neural network.

Figure 10.22  The boundary of the neural network classifier we trained. Notice that it correctly classifies most
of the points, with a few exceptions.

	 Coding neural networks in Keras� 305

Note that the model managed to classify the data pretty well, encircling the triangles and leaving
the squares outside. It made some mistakes, due to noisy data, but this is OK. The rigged bound-
ary hints to small levels of overfitting, but in general it seems like a good model.

Training a neural network for image recognition
In this section, we learn how to train a neural network for image recognition. The dataset we use
is MNIST, a popular dataset for image recognition, which contains 70,000 handwritten digits
from 0 to 9. The label of each image is the corresponding digit. Each grayscale image comes as a
28-by-28 matrix of numbers between 0 and 255, where 0 represents white, 255 represents black,
and any number in between represents a shade of gray. The code for this section follows:

•	 Notebook: Image_recognition.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_
Networks/Image_recognition.ipynb

•	 Dataset: MNIST (comes preloaded with Keras)

Loading the data

This dataset comes preloaded in Keras, so it is easy to load it into NumPy arrays. In fact, it has
already been separated into training and testing sets of sizes 60,000 and 10,000, respectively. The
following lines of code will load them into NumPy arrays:

from tensorflow import keras
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

In figure 10.23, you can see the first five images in the dataset with their labels.

Figure 10.23  Some examples of handwritten digits in MNIST with their labels

Preprocessing the data

Neural networks receive vectors as input instead of matrices, so we must turn each 28-by-28
image into a long vector of length 282 = 784. We can use the reshape function for this, as shown
next:

x_train_reshaped = x_train.reshape(-1, 28*28)
x_test_reshaped = x_test.reshape(-1, 28*28)

https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/Image_recognition.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/Image_recognition.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/Image_recognition.ipynb

306	 Chapter 10 I Combining building blocks to gain more power: Neural networks

As with the previous example, we must also categorize the labels. Because the label is a number
between 0 and 9, we must turn that into a vector of length 10, in which the entry corresponding
to the label is a 1 and the rest are 0. We can do this with the following lines of code:

y_train_cat = to_categorical(y_train, 10)
y_test_cat = to_categorical(y_test, 10)

This process is illustrated in figure 10.24.

0

0

Neural

network

10 0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0 0 0 0

0

0

1 1

1 1

1

1

1

0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
1
0
0
0
0
0
0

0
1

0
0
0
0
0
0
0
0

Figure 10.24  Before training the neural network, we preprocess the images and the labels in the following
way. We shape the rectangular image into a long vector by concatenating the rows. We then convert each label
into a vector of length 10 with only one non-zero entry in the position of the corresponding label.

Building and training the model

We can use the same architecture that we used in the previous model, with a small change, because
the input is now of size 784. In the next lines of code, we define the model and its architecture:

model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(28*28,)))
model.add(Dropout(.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(.2))
model.add(Dense(10, activation='softmax'))

Now we compile and train the model for 10 epochs with a batch size of 10, as shown here. This
model has 109,386 trainable parameters, so training for 10 epochs may take a few minutes on
your computer.

	 Coding neural networks in Keras� 307

model.compile(loss = 'categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

model.fit(x_train_reshaped, y_train_cat, epochs=10, batch_size=10)

Looking at the output, we can see that the model has a training accuracy of 0.9164, which is good,
but let’s evaluate the testing accuracy to make sure the model is not overfitting.

Evaluating the model

We can evaluate the accuracy in the testing set by making predictions in the testing dataset and
comparing them with the labels. The neural network outputs vectors of length 10 with the prob-
abilities it assigns to each of the labels, so we can obtain the predictions by looking at the entry
of maximum value in this vector, as follows:

predictions_vector = model.predict(x_test_reshaped)
predictions = [np.argmax(pred) for pred in predictions_vector]

When we compare these to the labels, we get a testing accuracy of 0.942, which is quite good. We
can do better than this with more complicated architectures, such as convolutional neural net-
works (see more of this in the next section), but it’s good to know that with a small, fully con-
nected neural network, we can do quite well in an image recognition problem.

Let’s now look at some predictions. In figure 10.25, we can see a correct one (left) and an
incorrect one (right). Notice that the incorrect one is a poorly written image of a number 3, which
also looks a bit like an 8.

Label: 4
Prediction: 4

Label: 3
Prediction: 8

Figure 10.25  Left: An image of a 4 that has been correctly classified by the neural network. Right: An image of
a 3 that has been incorrectly classified as an 8.

With this exercise, we can see that the process of training such a large neural network is simple
with a few lines of code in Keras! Of course, there is much more one can do here. Play with the
notebook, add more layers to the neural network, change the hyperparameters, and see how high
you can improve the testing accuracy for this model!

308	 Chapter 10 I Combining building blocks to gain more power: Neural networks

Neural networks for regression
Throughout this chapter, we’ve seen how to use neural networks as a classification model, but
neural networks are just as useful as regression models. Luckily, we have only two small tweaks
to apply to a classification neural network to obtain a regression neural network. The first tweak
is to remove the final sigmoid function from the neural network. The role of this function is to
turn the input into a number between 0 and 1, so if we remove it, the neural network will be able
to return any number. The second tweak is to change the error function to the absolute error or
the mean square error, because these are the error functions associated with regression. Everything
else will remain the same, including the training process.

As an example, let’s look at the perceptron in figure 10.7 in the section “A graphical represen-
tation of perceptrons.” This perceptron makes the prediction ŷ = s(3x

1
– 2x

2
+ 4x

3
+ 2). If we

remove the sigmoid activation function, the new perceptron makes the prediction ŷ = 3x
1
– 2x

2
+

4x
3
+ 2. This perceptron is illustrated in figure 10.26. Notice that this perceptron represents a

linear regression model.

1

Output

Inputs Weights

No activation
function

Bias

2

4

–2

3

Figure 10.26  If we remove the activation function from a perceptron, we turn a classification model into a linear
regression model. The linear regression model predicts any numerical value, not just one between 0 and 1.

To illustrate this process, we train a neural network in Keras on a familiar dataset: the dataset of
housing prices in Hyderabad. Recall that in the section “Real-life application: Using Turi Create to
predict housing prices in India,” in chapter 3, we trained a linear regression model to fit this data-
set. The code for this section follows:

•	 Notebook: House_price_predictions_neural_network.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_
Networks/House_price_predictions_neural_network.ipynb

•	 Dataset: Hyderabad.csv

The details for loading the dataset and splitting the dataset into features and labels can be found
in the notebook. The architecture of the neural network that we’ll use follows:

https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/House_price_predictions_neural_network.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/House_price_predictions_neural_network.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_10_Neural_Networks/House_price_predictions_neural_network.ipynb

	 Other architectures for more complex datasets� 309

•	 An input layer of size 38 (the number of columns in the dataset)

•	 A hidden layer of size 128 with a ReLU activation function and a dropout parameter of 0.2

•	 A hidden layer of size 64 with a ReLU activation function and a dropout parameter of 0.2

•	 An output layer of size 1 with no activation function

model = Sequential()
model.add(Dense(38, activation='relu', input_shape=(38,)))
model.add(Dropout(.2))
model.add(Dense(128, activation='relu'))
model.add(Dropout(.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(.2))
model.add(Dense(1))

To train the neural network, we use the mean square error function and the Adam optimizer.
We’ll train for 10 epochs using a batch size of 10, as shown here:

model.compile(loss = 'mean_squared_error', optimizer='adam')
model.fit(features, labels, epochs=10, batch_size=10)

This neural network reports a root mean square error of 5,535,425 in the training dataset. Study
this model further by adding a testing set, and play with the architecture, and see how much you
can improve it!

Other architectures for more complex datasets
Neural networks are useful in many applications, perhaps more so than any other machine
learning algorithm currently. One of the most important qualities of neural networks is their
versatility. We can modify the architectures in very interesting ways to better fit our data and
solve our problem. To find out more about these architectures, check out Grokking Deep Learning
by Andrew Trask (Manning, 2019) and a set of videos available in appendix C or at https://
serrano.academy/neural-networks/.

How neural networks see: Convolutional neural networks (CNN)
As we learned in this chapter, neural networks are great with images, and we can use them in
many applications, such as the following:

•	 Image recognition: the input is an image, and the output is the label on the image. Some
famous datasets used for image recognition follow:

	– MNIST: handwritten digits in 28-by-28 gray scale images

	– CIFAR-10: color images, with 10 labels such as airplane, automobile, and so on, in
32-by-32 images

https://serrano.academy/neural-networks/
https://serrano.academy/neural-networks/

310	 Chapter 10 I Combining building blocks to gain more power: Neural networks

	– CIFAR-100: similar to CIFAR-10, but with 100 labels such as aquatic mammals,
flowers, and so on

•	 Semantic segmentation: the input is an image, and the output is not only the labels of
the things found in the image but also their location inside the image. Normally, the
neural network outputs this location as a bounded rectangle in the image.

In the section “Training a neural network for image recognition,” we built a small, fully con-
nected neural network that classified the MNIST dataset quite well. However, for more compli-
cated images, such as pictures and faces, a neural network like this one won’t do well because
turning the image into a long vector loses a lot of information. For these complicated images, we
need different architectures, and this is where convolutional neural networks come to help us.

For the details on neural networks, review the resources in appendix C, but here is a rough
outline of how they work. Imagine that we have a large image that we want to process. We take a
smaller window, say 5-by-5, or 7-by-7 pixels, and swipe it through the large image. Every time we
pass it through, we apply a formula called a convolution. Thus, we end with a slightly smaller
filtered image, which in some way summarizes the previous one—a convolutional layer. A con-
volutional neural network consists of several of these convolutional layers, followed by some fully
connected layers.

When it comes to complicated images, we normally wouldn’t go about training a neural net-
work from scratch. A useful technique called transfer learning consists of starting with a pre-
trained network and using our data to tweak some of its parameters (usually the last layer). This
technique tends to work well and at a low computational cost. Networks such as InceptionV3,
ImageNet, ResNet, and VGG have been trained by companies and research groups with large
computational power, so it’s highly recommended for us to use them.

How neural networks talk: Recurrent neural networks (RNN), gated recurrent
units (GRU), and long short-term memory networks (LSTM)

One of the most fascinating applications of neural networks is when we can get them to talk to
us or understand what we say. This involves listening to what we say or reading what we write,
analyzing it, and being able to respond or act. The ability for computers to understand and pro-
cess language is called natural language processing. Neural networks have had a lot of success in
natural language processing. The sentiment analysis example at the beginning of this chapter is
part of natural language processing, because it entails understanding sentences and determining
whether they have positive or negative sentiment. As you can imagine, many more cutting-edge
applications exist, such as the following:

•	 Machine translation: translating sentences from various languages into others.

•	 Speech recognition: decoding human voice and turning it into text.

•	 Text summarization: summarizing large texts into a few paragraphs.

•	 Chatbots: a system that can talk to humans and answer questions. These are not yet
perfected, but useful chatbots operate in specific topics, such as customer support.

	 Summary� 311

The most useful architectures that work well for processing texts are recurrent neural networks, and
some more advanced versions of them called long short-term memory networks (LSTM) and gated
recurrent units (GRU). To get an idea of what they are, imagine a neural network where the output
is plugged back into the network as part of the inputs. In this way, neural networks have a memory,
and when trained properly, this memory can help them make sense of the topic in the text.

How neural networks paint paintings: Generative adversarial networks (GAN)
One of the most fascinating applications of neural networks is generation. So far, neural networks
(and most other ML models in this book) have worked well in predictive machine learning, namely,
being able to answer questions such as “How much is that?” or “Is this a cat or a dog?” However, in
recent years, many advances have occurred in a fascinating area called generative machine learning.
Generative machine learning is the area of machine learning that teaches the computer how to
create things, rather than simply answer questions. Actions such as painting a painting, composing
a song, or writing a story represent a much higher level of understanding of the world.

Without a doubt, one of the most important advances in the last few years has been the devel-
opment of generative adversarial networks, or GANs. Generative adversarial networks have shown
fascinating results when it comes to image generation. GANs consist of two competing networks,
the generator and the discriminator. The generator attempts to generate real-looking images,
whereas the discriminator tries to tell the real images and the fake images apart. During the
training process, we feed real images to the discriminator, as well as fake images generated by the
generator. When applied to a dataset of human faces, this process results in a generator that can
generate some very real-looking faces. In fact, they look so real that humans often have a hard
time telling them apart. Test yourself against a GAN—www.whichfaceisreal.com.

Summary
•	 Neural networks are a powerful model used for classification and regression. A neural

network consists of a set of perceptrons organized in layers, where the output of one layer
serves as input to the next layer. Their complexity allows them to achieve great success in
applications that are difficult for other machine learning models.

•	 Neural networks have cutting-edge applications in many areas, including image
recognition and text processing.

•	 The basic building block of a neural network is the perceptron. A perceptron receives
several values as inputs, and outputs one value by multiplying the inputs by weights,
adding a bias, and applying an activation function.

•	 Popular activation functions include sigmoid, hyperbolic tangent, softmax, and the
rectified linear unit (ReLU). They are used between layers in a neural network to break
linearity and help us build more complex boundaries.

•	 The sigmoid function is a simple function that sends any real number to the interval
between 0 and 1. The hyperbolic tangent is similar, except the output is the interval

http://www.whichfaceisreal.com
http://www.whichfaceisreal.com

312	 Chapter 10 I Combining building blocks to gain more power: Neural networks

between –1 and 1. Their goal is to squish our input into a small interval so that our
answers can be interpreted as a category. They are mostly used for the final (output) layer
in a neural network. Due to the flatness of their derivatives, they may cause problems
with vanishing gradients.

•	 The ReLU function is a function that sends negative numbers to 0, and non-negative
numbers to themselves. It showed great success in reducing the vanishing gradient
problem, and thus it is used more in training neural networks than the sigmoid function
or the hyperbolic tangent function.

•	 Neural networks have a very complex structure, which makes them hard to train. The
process we use to train them, called backpropagation, has shown great success.
Backpropagation consists of taking the derivative of the loss function and finding all the
partial derivatives with respect to all the weights of the model. We then use these
derivatives to update the weights of the model iteratively to improve its performance.

•	 Neural networks are prone to overfitting and other problems such as vanishing gradients, but
we can use techniques such as regularization and dropout to help reduce these problems.

•	 We have some useful packages to train neural networks, such as Keras, TensorFlow, and
PyTorch. These packages make it very easy for us to train neural networks, because we
have to define only the architecture of the model and the error functions, and they take
care of the training. Furthermore, they have many built-in cutting-edge optimizers that
we can take advantage of.

Exercises
Exercise 10.1

The following image shows a neural network in which all the activations are sigmoid functions.

1 1

1

2

–1

–1

–1

–1

–2

2

1

1

3

	 Exercises� 313

What would this neural network predict for the input (1,1)?

Exercise 10.2

As we learned in exercise 5.3, it is impossible to build a perceptron that mimics the XOR gate. In
other words, it is impossible to fit the following dataset with a perceptron and obtain 100%
accuracy:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

This is because the dataset is not linearly separable. Using a neural network of depth 2, build a
perceptron that mimics the XOR gate shown previously. As the activation functions, use the step
function instead of the sigmoid function to get discrete outputs.

hint  This will be hard to do using a training method; instead, try eyeballing the weights.
Try (or search online how) to build an XOR gate using AND, OR, and NOT gates, and use
the results of exercise 5.3 to help you.

Exercise 10.3

At the end of the section “A graphical representation of neural networks,” we saw that the neural
network in figure 10.13 with the activation function doesn’t fit the dataset in table 10.1 because
the point (1,1) is misclassified.

a.	 Verify that this is the case.

b.	 Change the weights so that the neural network classifies every point correctly.

315

In this chapter

•	 what a support vector machine is

•	 which of the linear classifiers for a dataset has the best boundary

•	 using the kernel method to build nonlinear classifiers

•	 coding support vector machines and the kernel method in

Scikit-Learn

Finding boundaries with style:
Support vector machines and the kernel method 11

Experts recommend the kernel method when attempting to separate chicken datasets.

316	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

In this chapter, we discuss a powerful classification model called the support vector machine (SVM
for short). An SVM is similar to a perceptron, in that it separates a dataset with two classes using a
linear boundary. However, the SVM aims to find the linear boundary that is located as far as pos-
sible from the points in the dataset. We also cover the kernel method, which is useful when used in
conjunction with an SVM, and it can help classify datasets using highly nonlinear boundaries.

In chapter 5, we learned about linear classifiers, or perceptrons. With two-dimensional data,
these are defined by a line that separates a dataset consisting of points with two labels. However,
we may have noticed that many different lines can separate a dataset, and this raises the follow-
ing question: how do we know which is the best line? In figure 11.1, we can see three different
linear classifiers that separate this dataset. Which one do you prefer, classifier 1, 2, or 3?

Classifier 2Classifier 1 Classifier 3

Figure 11.1  Three classifiers that classify our data set correctly. Which should we prefer, classifier 1, 2, or 3?

If you said classifier 2, we agree. All three lines separate the dataset well, but the second line is better
placed. The first and third lines are very close to some of the points, whereas the second line is far
from all the points. If we were to wiggle the three lines around a little bit, the first and the third may
go over some of the points, misclassifying some of them in the process, whereas the second one will
still classify them all correctly. Thus, classifier 2 is more robust than classifiers 1 and 3.

This is where support vector machines come into play. An SVM classifier uses two parallel
lines instead of one line. The goal of the SVM is twofold; it tries to classify the data correctly and
also tries to space the lines as much as possible. In figure 11.2, we can see the two parallel lines
for the three classifiers, together with their middle line for reference. The two external (dotted)
lines in classifier 2 are the farthest from each other, which makes this classifier the best one.

Classifier 2Classifier 1 Classifier 3

Figure 11.2  We draw our classifier as two parallel lines, as far apart from each other as possible. We can see
that classifier 2 is the one where the parallel lines are the farthest away from each other. This means that the
middle line in classifier 2 is the one best located between the points.

	 Finding boundaries with style: Support vector machines and the kernel method� 317

We may want to visualize an SVM as the line in the middle that tries to stay as far as possible
from the points. We can also imagine it as the two external parallel lines trying to stay as far away
from each other as possible. In this chapter, we’ll use both visualizations at different times,
because each of them is useful in certain situations.

How do we build such a classifier? We can do this in a similar way as before, with a slightly
different error function and a slightly different iterative step.

note  In this chapter, all the classifiers are discrete, namely, their output is 0 or 1. Sometimes
they are described by their prediction ŷ = step(f(x)), and other times by their boundary
equation f(x) = 0, namely, the graph of the function that attempts to separate our data
points into two classes. For example, the perceptron that makes the prediction ŷ = step(3x

1
+ 4x

2
– 1) sometimes is described only by the linear equation 3x

1
+ 4x

2
– 1 = 0. For some

classifiers in this chapter, especially those in the section “Training SVMs with nonlinear
boundaries: The kernel method,” the boundary equation will not necessarily be a linear
function.

In this chapter, we see this theory mostly on datasets of one and two dimensions (points on a line
or on the plane). However, support vector machines work equally well in datasets of higher
dimensions. The linear boundaries in one dimension are points and in two dimensions are lines.
Likewise, the linear boundaries in three dimensions are planes, and in higher dimensions, they
are hyperplanes of one dimension less than the space in which the points live. In each of these
cases, we try to find the boundary that is the farthest from the points. In figure 11.3, you can see
examples of boundaries for one, two, and three dimensions.

Two dimensionsOne dimension Three dimensions

Figure 11.3  Linear boundaries for datasets in one, two, and three dimensions. In one dimension, the boundary
is formed by two points, in two dimensions by two lines, and in three dimensions by two planes. In each of the
cases, we try to separate these two as much as possible. The middle boundary (point, line, or plane) is illustrated
for clarity.

All the code for this chapter is in this GitHub repository: https://github.com/luisguiserrano/
manning/tree/master/Chapter_11_Support_Vector_Machines.

https://github.com/luisguiserrano/manning/tree/master/Chapter_11_Support_Vector_Machines
https://github.com/luisguiserrano/manning/tree/master/Chapter_11_Support_Vector_Machines

318	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

Using a new error function to build better classifiers
As is common in machine learning models, SVMs are defined using an error function. In this
section, we see the error function of SVMs, which is very special, because it tries to maximize
two things at the same time: the classification of the points and the distance between the lines.

To train an SVM, we need to build an error function for a classifier consisting of two lines,
spaced as far apart as possible. When we think of building an error function, we should always
ask ourselves: “What do we want the model to achieve?” The following are the two things we
want to achieve:

•	 Each of the two lines should classify the points as best as possible.

•	 The two lines should be as far away from each other as possible.

The error function should penalize any model that doesn’t achieve these things. Because we want
two things, our SVM error function should be the sum of two error functions: the first one
penalizes points that are misclassified, and the second one penalizes lines that are too close to
each other. Therefore, our error function can look like this:

Error = Classification Error + Distance Error

In the next two sections, we develop each one of these two terms separately.

Classification error function: Trying to classify the points correctly

In this section, we learn the classification error function. This is the part of the error function
that pushes the classifier to correctly classify the points. In short, this error is calculated as fol-
lows. Because the classifier is formed by two lines, we think of them as two separate discrete
perceptrons (chapter 5). We then calculate the total error of this classifier as the sum of the two
perceptron errors (section “How to compare classifiers? The error function” in chapter 5). Let’s
take a look at an example.

The SVM uses two parallel lines, and luckily, parallel lines have similar equations; they have
the same weights but a different bias. Thus, in our SVM, we use the central line as a frame of
reference L with equation w

1
x

1
 + w

2
x

2
 + b = 0, and construct two lines, one above it and one

below it, with the respective equations:

•	 L+: w
1
x

1
 + w

2
x

2
 + b = 1, and

•	 L–: w
1
x

1
 + w

2
x

2
 + b = –1

As an example, figure 11.4 shows the three parallel lines, L, L+, and L–, with the following
equations:

•	 L: 2x
1
 + 3x

2
 – 6 = 0

•	 L+: 2x
1
 + 3x

2
 – 6 = 1

•	 L–: 2x
1
 + 3x

2
 – 6 = –1

	 Using a new error function to build better classifiers� 319

Figure 11.4  Our main line L is the one in the middle. We build the two parallel equidistant lines L+ and L– by
slightly changing the equation of L.

Our classifier now consists of the lines L+ and L–. We can think of L+ and L– as two independent
perceptron classifiers, and each of them has the same goal of classifying the points correctly.
Each classifier comes with its own perceptron error function, so the classification function is
defined as the sum of these two error functions, as illustrated in figure 11.5.

Error 1

Error 2

Error = Error 1 + Error 2

(4,3) (4,3)

Figure 11.5  Now that our classifier consists of two lines, the error of a misclassified point is measured with
respect to both lines. We then add the two errors to obtain the classification error. Note that the error is not the
length of the perpendicular segment to the boundary, as illustrated, but it is proportional to it.

Notice that in an SVM, both lines have to classify the points well. Therefore, a point that is
between the two lines is always misclassified by one of the lines, so it does not count as a correctly
classified point by the SVM.

Recall from the section “How to compare classifiers? The error function” in chapter 5 that
the error function for the discrete perceptron with prediction ŷ = step(w

1
x

1
 + w

2
x

2
 + b) at the

point (p, q) is given by the following:

320	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

•	 0 if the point is correctly classified, and

•	 |w
1
x

1
 + w

2
x

2
 + b| if the point is incorrectly classified

As an example, consider the point (4,3) with a label of 0. This point is incorrectly classified by
both of the perceptrons in figure 11.5. Note that the two perceptrons give the following
predictions:

•	 L+: ŷ = step(2x
1
 + 3x

2
 – 7)

•	 L–: ŷ = step(2x
1
 + 3x

2
 – 5)

Therefore, its classification error with respect to this SVM is

|2 · 4 + 3 · 3 – 7| + |2 · 4 + 3 · 3 – 5| = 10 + 12 = 22.

Distance error function: Trying to separate our two lines as far apart as possible
Now that we have created an error function that measures classification errors, we need to build
one that looks at the distance between the two lines and raises an alarm if this distance is small.
In this section, we discuss a surprisingly simple error function that is large when the two lines are
close and small when they are far.

This error function is called the distance error function, and we’ve already seen it before; it is
the regularization term we learned in the section “Modifying the error function to solve our
problem” in chapter 4. More specifically, if our lines have equations w1

x
1
 + w

2
x

2
 + b = 1 and w

1
x

1

+ w
2
x

2
 + b = –1, then the error function is w

1
2 + w

2
2. Why? We’ll make use of the following fact:

the perpendicular distance between the two lines is precisely 2 2
1 2

2

w w+ , as illustrated in figure

11.6. If you’d like to work out the details of this distance calculation, please check exercise 11.1
at the end of this chapter.

Distance =

Figure 11.6  The distance between the two parallel lines can be calculated based on the equations of the lines.

	 Using a new error function to build better classifiers� 321

Knowing this, notice the following:

•	 When w
1

2 + w
2

2 is large, 2 2
1 2

2

w w+
is small.

•	 When w
1

2 + w
2

2 is small, 2 2
1 2

2

w w+ is large.

Because we want the lines to be as far apart as possible, this term w
1

2 + w
2

2 is a good error func-
tion, as it gives us large values for the bad classifiers (those where the lines are close) and small
values for the good classifiers (those where the lines are far).

In figure 11.7, we can see two examples of SVM classifiers. Their equations follow:

•	 SVM 1:

	– L+: 3x
1
 + 4x

2
 + 5 = 1

	– L–: 3x
1
 + 4x

2
 + 5 = –1

•	 SVM 2:

	– L+: 30x
1
 + 40x

2
 + 50 = 1

	– L–: 30x
1
 + 40x

2
 + 50 = 1

Their distance error functions are shown next:

•	 SVM 1:

	– Distance error function = 32 + 42 = 25

•	 SVM 2:

	– Distance error function = 302 + 402 = 2500

Notice also from figure 11.7 that the lines are much closer in SVM 2 than in SVM 1, which makes
SVM 1 a much better classifier (from the distance perspective). The distance between the lines in

SVM 1 is
2 2

2
0.4

3 4
=

+
, whereas in SVM 2 it is

2 2

2
0.04

30 40
=

+
.

322	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

Distance = 0.4

Distance = 0.04

30x
1 +

40x
2 –

50
=

1

30x
1 +

40x
2 –

50
=

–1

Error function =

Good classifier

Error function =

SVM 1 SVM 2

Bad classifier

Figure 11.7  Left: An SVM where the lines are at distance 0.4 apart, with an error of 25. Right: An SVM where
the lines are at distance 0.04 apart, with an error of 2500. Notice that in this comparison, the classifier on the left
is much better than the one on the right, because the lines are farther apart from each other. This results in a
smaller distance error.

Adding the two error functions to obtain the error function
Now that we’ve built a classification error function and a distance error function, let’s see how to
combine them to build an error function that helps us make sure that we have achieved both
goals: classify our points well and with two lines that are far apart from each other.

To obtain this error function, we add the classification error function and the distance error
function and get the following formula:

Error = Classification Error + Distance Error

A good SVM that minimizes this error function must then try to make as few classification
errors as possible, while simultaneously trying to keep the lines as far apart as possible.

Good classifier Bad classifier

(makes errors)

Bad classifier

(lines ar too close t ether)e og

Figure 11.8  Left: A good SVM consisting of two well-spaced lines that classifies all the points correctly. Middle:
A bad SVM that misclassifies two points. Right: A bad SVM that consists of two lines that are too close together.

	 Using a new error function to build better classifiers� 323

In figure 11.8, we can see three SVM classifiers for the same dataset. The one on the left is a good
classifier, because it classifies the data well and the lines are far apart, reducing the likelihood of
errors. The one in the middle makes some errors (because there is a triangle underneath the top
line and a square over the bottom line), so it is not a good classifier. The one on the right classifies
the points correctly, but the lines are too close together, so it is also not a good classifier.

Do we want our SVM to focus more on classification or distance?
The C parameter can help us
In this section, we learn a useful technique to tune and improve our model, which involves intro-
ducing the C parameter. The C parameter is used in cases where we want to train an SVM that
pays more attention to classification than to distance (or the other way around).

So far it seems that all we have to do to build a good SVM classifier is to keep track of two
things. We want to make sure the classifier makes as few errors as possible, while keeping the
lines as far apart as possible. But what if we have to sacrifice one for the benefit of the other? In
figure 11.9, we have two classifiers for the same dataset. The one on the left makes some errors,
but the lines are far apart. The one on the right makes no errors, but the lines are too close
together. Which one should we prefer?

Lines are far apart (good).

Makes errors (bad).

Lines are too close (bad).

Doesn’t make errors (good).

Figure 11.9  Both of these classifiers have one pro and one con. The one on the left consists of well-spaced lines
(pro), but it misclassifies some points (con). The one on the right consists of lines that are too close together (con),
but it classifies all the points correctly (pro).

It turns out that the answer for this depends on the problem we are solving. Sometimes we want
a classifier that makes as few errors as possible, even if the lines are too close, and sometimes we
want a classifier that keeps the lines apart, even if it makes a few errors. How do we control this?
We use a parameter which we call the C parameter. We slightly modify the error formula by
multiplying the classification error by C, to get the following formula:

Error formula = C · (Classification Error) + (Distance Error)

If C is large, then the error formula is dominated by the classification error, so our classifier
focuses more on classifying the points correctly. If C is small, then the formula is dominated by
the distance error, so our classifier focuses more on keeping the lines far apart.

324	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

C = 0.01 C = 1 C = 100

Figure 11.10  Different values of C toggle between a classifier with well-spaced lines and one that classifies
points correctly. The classifier on the left has a small value of C (0.01), and the lines are well spaced, but it makes
mistakes. The classifier on the right has a large value of C (100), and it classifies points correctly, but the lines are
too close together. The classifier in the middle makes one mistake but finds two lines that are well spaced apart.

In figure 11.10, we can see three classifiers: one with a large value of C that classifies all points
correctly, one with a small value of C that keeps the lines far apart, and one with C = 1, which
tries to do both. In real life, C is a hyperparameter that we can tune using methods such as the
model complexity graph (section “A numerical way to decide how complex our model should be”
in chapter 4) or our own knowledge of the problem we’re solving, the data, and the model.

Coding support vector machines in Scikit-Learn
Now that we’ve learned what an SVM is, we are ready to code one and use it to model some data.
In Scikit-Learn, coding an SVM is simple and that’s what we learn in this section. We also learn
how to use the C parameter in our code.

Coding a simple SVM
We start by coding a simple SVM in a sample dataset and then we’ll add more parameters. The
dataset is called linear.csv, and its plot is shown in figure 11.11. The code for this section follows:

•	 Notebook: SVM_graphical_example.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_
Vector_Machines/SVM_graphical_example.ipynb

•	 Dataset: linear.csv

We first import from the svm package in Scikit-Learn and load our data as follows:

from sklearn.svm import SVC

https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_Machines/SVM_graphical_example.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_Machines/SVM_graphical_example.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_Machines/SVM_graphical_example.ipynb

	 Coding support vector machines in Scikit-Learn� 325

Figure 11.11  An almost linearly separable dataset, with some outliers

Then, as shown in the next code snippet, we load our data into two Pandas DataFrames called
features and labels, and then we define our model called svm_linear and train it. The accu-
racy we obtain is 0.933, and the plot is shown in figure 11.12.

svm_linear = SVC(kernel='linear')
svm_linear.fit(features, labels)

Accuracy = 0.933

Figure 11.12  The plot of the SVM classifier we’ve built in Scikit-Learn consists of a line. The accuracy of this
model is 0.933.

326	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

The C parameter
In Scikit-Learn, we can easily introduce the C parameter into the model. Here we train and plot
two models, one with a very small value of 0.01, and another one with a large value of 100, which
is shown in the following code and in figure 11.13:

svm_c_001 = SVC(kernel='linear', C=0.01)
svm_c_001.fit(features, labels)

svm_c_100 = SVC(kernel='linear', C=100)
svm_c_100.fit(features, labels)

C = 100

Accuracy = 0.917

C = 0.01

Accuracy = 0.867

Figure 11.13  The classifier on the left has a small value of C, and it spaced the line well between the points, but
it makes some mistakes. The classifier on the right has a large value of C, and it makes no mistakes, although the
line passes too close to some of the points.

We can see that the model with a small value of C doesn’t put that much emphasis on classifying
the points correctly, and it makes some mistakes, as is evident in its low accuracy (0.867). It is
hard to tell in this example, but this classifier puts a lot of emphasis on the line being as far away
from the points as possible. In contrast, the classifier with the large value of C tries to classify all
the points correctly, which reflects on its higher accuracy.

Training SVMs with nonlinear boundaries:
The kernel method
As we’ve seen in other chapters of this book, not every dataset is linearly separable, and many
times we need to build nonlinear classifiers to capture the complexity of the data. In this section,
we study a powerful method associated with SVMs called the kernel method, which helps us
build highly nonlinear classifiers.

	 Training SVMs with nonlinear boundaries: The kernel method � 327

If we have a dataset and find that we can’t separate it with a linear classifier, what can we do?
One idea is to add more columns to this dataset and hope that the richer dataset is linearly sepa-
rable. The kernel method consists of adding more columns in a clever way, building a linear
classifier on this new dataset and later removing the columns we added while keeping track of
the (now nonlinear) classifier.

That was quite a mouthful, but we have a nice geometric way to see this method. Imagine that
the dataset is in two dimensions, which means that the input has two columns. If we add a third
column, the dataset is now three-dimensional, like if the points on your paper all of a sudden
start flying into space at different heights. Maybe if we raise the points at different heights in a
clever way, we can separate them with a plane. This is the kernel method, and it is illustrated in
figure 11.14.

Not separable

by a line

Bring triangles up.

Bring squares down.

Now separable

by a plane

Figure 11.14  Left: The set is not separable by a line. Middle: We look at it in three dimensions, and proceed to
raise the two triangles and lower the two squares. Right: Our new dataset is now separable by a plane. (Source:
Image created with the assistance of Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/
products/grapher.)

Kernels, feature maps, and operator theory

The theory behind the kernel method comes from a field in mathematics called operator theory.
A kernel is a similarity function, which, in short, is a function that tells us if two points are sim-
ilar or different (e.g., close or far). A kernel can give rise to a feature map, which is a map between
the space where our dataset lives and a (usually) higher-dimensional space.

The full theory of kernels and feature maps is not needed to understand the classifiers. If you’d
like to delve into these more, see the resources in appendix C. For the purpose of this chapter, we
look at the kernel method as a way of adding columns to our dataset to make the points separa-
ble. For example, the dataset in figure 11.14 has two columns, x

1
 and x

2
, and we have added the

third column with the value x
1
x

2
. Equivalently, it can also be seen as the function that sends the

point (x
1
, x

2
) in the plane to the point (x

1
, x

2
, x

1
x

2
) in space. Once the points belong in 3-D space,

we can separate them using the plane seen on the right of figure 11.14. To study this example
more in detail, see exercise 11.2 at the end of the chapter.

https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher

328	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

The two kernels and their corresponding features maps we see in this chapter are the polyno-
mial kernel and the radial basis function (RBF) kernel. Both of them consist of adding columns to
our dataset in different, yet very effective, ways.

Using polynomial equations to our benefit: The polynomial kernel

In this section, we discuss the polynomial kernel, a useful kernel that will help us model nonlin-
ear datasets. More specifically, the kernel method helps us model data using polynomial equa-
tions such as circles, parabolas, and hyperbolas. We’ll illustrate the polynomial kernel with two
examples.

Example 1: A circular dataset

For our first example, let’s try to classify the dataset in table 11.1.

Table 11.1  A small dataset, depicted in figure 11.15

x1 x2 y

0.3 0.3 0

0.2 0.8 0

–0.6 0.4 0

0.6 –0.4 0

–0.4 –0.3 0

0 –0.8 0

–0.4 1.2 1

0.9 –0.7 1

–1.1 –0.8 1

0.7 0.9 1

–0.9 0.8 1

0.6 –1 1

The plot is shown in figure 11.15, where the points with label 0 are drawn as squares and those
with label 1 are drawn as triangles.

When we look at the plot in figure 11.15, it is clear that a line won’t be able to separate the
squares from the triangles. However, a circle would (seen in figure 11.16). Now the question is, if
a support vector machine can draw only linear boundaries, how can we draw this circle?

	 Training SVMs with nonlinear boundaries: The kernel method � 329

Figure 11.15  Plot of the dataset in table 11.1. Note that it is not separable by a line. Therefore, this dataset is a
good candidate for the kernel method.

Figure 11.16  The kernel method gives us a classifier with a circular boundary, which separates these points
well.

330	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

To draw this boundary, let’s think. What is a characteristic that separates the squares from the tri-
angles? From observing the plot, it seems that the triangles are farther from the origin than the circles.
The formula that measures the distance to the origin is the square root of the sum of the squares

of the two coordinates. If these coordinates are x
1
 and x

2
, then this distance is 2 2

1 2 x x+ . Let’s for-
get about the square root, and think only of x

1
2 + x

2
2. Now let’s add a column to table 11.1 with

this value and see what happens. The resulting dataset is shown in table 11.2.

Table 11.2  We have added one more column to table 11.1. This one consists of the sum of the
squares of the values of the first two columns.

x1 x2 x1
2 + x2

2 y

0.3 0.3 0.18 0

0.2 0.8 0.68 0

–0.6 0.4 0.52 0

0.6 –0.4 0.52 0

–0.4 –0.3 0.25 0

0 –0.8 0.64 0

–0.4 1.2 1.6 1

0.9 –0.7 1.3 1

–1.1 –0.8 1.85 1

0.7 0.9 1.3 1

–0.9 0.8 1.45 1

0.6 –1 1.36 1

After looking at table 11.2, we can see the trend. All the points labeled 0 satisfy that the sum of
the squares of the coordinates is less than 1, and the points labeled 1 satisfy that this sum is
greater than 1. Therefore, the equation on the coordinates that separates the points is precisely
x

1
2 + x

2
2 = 1. Note that this is not a linear equation, because the variables are raised to a power

greater than one. In fact, this is precisely the equation of a circle.
The geometric way to imagine this is depicted in figure 11.17. Our original set lives in the

plane, and it is impossible to separate the two classes with a line. But if we raise each point (x
1
, x

2
)

to the height x
1

2 + x
2

2, this is the same as putting the points in the paraboloid with equation z =
x

1
2 + x

2
2 (drawn in the figure). The distance we raised each point is precisely the square of the

distance from that point to the origin. Therefore, the squares are raised a small amount, because
they are close to the origin, and the triangles are raised a large amount, because they are far away
from the origin. Now the squares and triangles are far away from each other, and therefore, we
can separate them with the horizontal plane at height 1—in other words, the plane with equation
z = 1. As a final step, we project everything down to the plane. The intersection between the
paraboloid and the plane becomes the circle of equation x

1
2 + x

2
2 = 1. Notice that this equation is

	 Training SVMs with nonlinear boundaries: The kernel method � 331

not linear, because it has quadratic terms. Finally, the prediction this classifier makes is given by
ŷ = step(x

1
2 + x

2
2 – 1).

Not linearly separable Raise each point of c dinatesoor
to a height of

Separate points with the
plane of equation

Project down, get circle
with equation

Figure 11.17  The kernel method. Step 1: We start with a dataset that is not linearly separable. Step 2: Then we
raise each point by a distance that is the square of its distance to the origin. This creates a paraboloid. Step 3:
Now the triangles are high, whereas the squares are low. We proceed to separate them with a plane at height 1.
Step 4. We project everything down. The intersection between the paraboloid and the plane creates a circle.
The projection of this circle gives us the circular boundary of our classifier. (Source: Image created with the
assistance of Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/products/grapher.)

https://www.goldensoftware.com/products/grapher

332	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

Example 2: The modified XOR dataset

Circles are not the only figure we can draw. Let’s consider a very simple dataset, illustrated in
table 11.3 and plotted in figure 11.18. This dataset is similar to the one that corresponds to the
XOR operator from exercises 5.3 and 10.2. If you’d like to solve the same problem with the orig-
inal XOR dataset, you can do it in exercise 11.2 at the end of the chapter.

Table 11.3  The modified XOR dataset

x1 x2 y

–1 –1 1

–1 1 0

1 –1 0

1 1 1

To see that this dataset is not linearly separable, take a look at figure 11.18. The two triangles
lie on opposite corners of a large square, and the two squares lie on the remaining two corners.
It is impossible to draw a line that separates the triangles from the squares. However, we can
use a polynomial equation to help us, and this time we’ll use the product of the two features.
Let’s add the column corresponding to the product x

1
x

2
 to the original dataset. The result is

shown in table 11.4.

Table 11.4  We have added a column to table 11.3, which consists of the product of the first two
columns. Notice that there is a strong relation between the rightmost two columns on the table.

x1 x2 x1 x2 y

–1 –1 1 1

–1 1 –1 0

1 –1 –1 0

1 1 1 1

Notice that the column corresponding to the product x
1
x

2
is very similar to the column of labels.

We can now see that a good classifier for this data is the one with the following boundary equa-
tion: x

1
x

2
 = 1. The plot of this equation is the union of the horizontal and vertical axes, and the

reason for this is that for the product x
1
x

2
 to be 0, we need that x

1
 = 0 or x

2
 = 0. The prediction

this classifier makes is given by ŷ = step(x
1
x

2
), and it is 1 for points in the northeast and southwest

quadrants of the plane, and 0 elsewhere.

	 Training SVMs with nonlinear boundaries: The kernel method � 333

(–1,1)

(–1,–1)

(1,1)

(1,–1)

Figure 11.18  The plot of the dataset in table 11.3. The classifier that separates the squares from the triangles
has boundary equation x1x2 = 0, which corresponds to the union of the horizontal and vertical axes.

Going beyond quadratic equations: The polynomial kernel

In both of the previous examples, we used a polynomial expression to help us classify a dataset
that was not linearly separable. In the first example, this expression was x

1
2 + x

2
2 , because that

value is small for points near the origin and large for points far from the origin. In the second
example, the expression was x

1
x

2
, which helped us separate points in different quadrants of

the plane.
How did we find these expressions? In a more complicated dataset, we may not have the lux-

ury to look at a plot and eyeball an expression that will help us out. We need a method or, in other
words, an algorithm. What we’ll do is consider all the possible monomials of degree 2 (qua-
dratic), containing x

1
 and x

2
. These are the following three monomials: x

1
2, x

1
x

2
, and x

2
2. We call

these new variables x
3
, x

4
, and x

5
, and we treat them as if they had no relation with x

1
 and x

2

whatsoever. Let’s apply this to the first example (the circle). The dataset in table 11.1 with these
new columns added is shown in table 11.5.

We can now build an SVM that classifies this enhanced dataset. The way to train an SVM is
using the methods learned in the last section. I encourage you to build such a classifier using
Scikit-Learn, Turi Create, or the package of your choice. By inspection, here is one equation of a
classifier that works:

0x
1
 + 0x

2
 + 1x

3
+ 0x

4
+ 1x

5
– 1 = 0

334	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

Table 11.5  We have added three more rowcolumns to table 11.1, one corresponding to each of
the monomials of degree 2 on the two variables x

1
 and x

2
. These monomials are x

1
2, x

1
x

2
, and x

2
2.

x1 x2 x3 = x1
2 x4 = x1

 x2 x5 = x2
2 y

0.3 0.3 0.09 0.09 0.09 0

0.2 0.8 0.04 0.16 0.64 0

–0.6 0.4 0.36 –0.24 0.16 0

0.6 –0.4 0.36 –0.24 0.16 0

–0.4 –0.3 0.16 0.12 0.09 0

0 –0.8 0 0 0.64 0

–0.4 1.2 0.16 –0.48 1.44 1

0.9 –0.7 0.81 –0.63 0.49 1

–1.1 –0.8 1.21 0.88 0.64 1

0.7 0.9 0.49 0.63 0.81 1

–0.9 0.8 0.81 –0.72 0.64 1

0.6 –1 0.36 –0.6 1 1

Remembering that x
3
 = x

1
2 and x

4
 = x

2
2, we get the desired equation of the circle, as shown next:

x
1

2 + x
2

2 = 1

If we want to visualize this process geometrically, like we’ve done with the previous ones, it gets
a little more complicated. Our nice two-dimensional dataset became a five-dimensional dataset.
In this one, the points labelled 0 and 1 are now far away, and can be separated with a four-dimen-
sional hyperplane. When we project this down to two dimensions, we get the desired circle.

The polynomial kernel gives rise to the map that sends the 2-D plane to the 5-D space. The
map is the one that sends the point (x

1
, x

2
) to the point (x

1
, x

2
, x

1
2, x

1
x

2
, x

2
2). Because the maxi-

mum degree of each monomial is 2, we say that this is the polynomial kernel of degree 2. For the
polynomial kernel, we always have to specify the degree.

What columns do we add to the dataset if we are using a polynomial kernel of higher degree,
say, k? We add one column for each monomial in the given set of variables, of degree less than or
equal to k. For example, if we are using the degree 3 polynomial kernel on the variables x

1
 and x

2
,

we are adding columns corresponding to the monomials {x
1
, x

2
, x

1
2, x

1
x

2
, x

2
2, x

1
3, x

1
2x

2
, x

1
x

2
2, x

2
3}.

We can also do this for more variables in the same way. For example, if we use the degree 2 poly-
nomial kernel on the variables x

1
, x

2
, and x

3,
 we are adding columns with the following monomi-

als: {x
1
, x

2
, x

3
, x

1
2, x

1
x

2
, x

1
x

3
, x

2
2, x

2
x

3
, x

3
2}.

Using bumps in higher dimensions to our benefit: The radial basis function
(RBF) kernel
The next kernel that we’ll see is the radial basis function kernel. This kernel is tremendously
useful in practice, because it can help us build nonlinear boundaries using certain special func-
tions centered at each of the data points. To introduce the RBF kernel, let’s first look at the

	 Training SVMs with nonlinear boundaries: The kernel method � 335

one-dimensional example shown in figure 11.19. This dataset is not linearly separable—the
square lies exactly between the two triangles.

–1 0 1

Figure 11.19  A dataset in one dimension that can’t be classified by a linear classifier. Notice that a linear
classifier is a point that divides the line into two parts, and there is no point that we can locate on the line that
leaves all the triangles on one side and the square on the other side.

The way we will build a classifier for this dataset is to imagine building a mountain or a valley on
each of the points. For the points labeled 1 (the triangles), we’ll put a mountain, and for those
labeled 0 (the square), we’ll put a valley. These mountains and valleys are called radial basis func-
tions. The resulting figure is shown at the top of figure 11.20. Now, we draw a mountain range such
that at every point, the height is the sum of all the heights of the mountains and valleys at that
point. We can see the resulting mountain range at the bottom of figure 11.20. Finally, the boundary
of our classifier corresponds to the points at which this mountain range is at height zero, namely,
the two highlighted points in the bottom. This classifier classifies anything in the interval between
those two points as a square and everything outside of the interval as a triangle.

–1

Boundary

Add the heights.

0 1

–1 0 1

Figure 11.20  Using an SVM with the RBF kernel to separate a nonlinear dataset in one dimension. Top: We
draw a mountain (radial basis function) at each point with label 1 and a valley at each point of label 0. Bottom:
We add the radial basis functions from the top figure. The resulting function intersects the axis twice. The two
points of intersection are the boundary of our SVM classifier. We classify each point between them as a square
(label 0) and every point outside as a triangle (label 1).

336	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

This (plus some math around it which comes in the next section) is the essence of the RBF kernel.
Now let’s use it to build a similar classifier in a two-dimensional dataset.

To build the mountains and valleys on the plane, imagine the plane as a blanket (as illustrated
in figure 11.21). If we pinch the blanket at that point and raise it, we get the mountain. If we push
it down, we get the valley. These mountains and valleys are radial basis functions. They are called
radial basis functions because the value of the function at a point is dependent only on the dis-
tance between the point and the center. We can raise the blanket at any point we like, and that
gives us one different radial basis function for each point. The radial basis function kernel (also
called RBF kernel) gives rise to a map that uses these radial functions to add several columns to
our dataset in a way that will help us separate it.

Raise

Figure 11.21  A radial basis function consists of raising the plane at a particular point. This is the family of
functions that we’ll use to build nonlinear classifiers. (Source: Image created with the assistance of Grapher™
from Golden Software, LLC; https://www.goldensoftware.com/products/grapher.)

How do we use this as a classifier? Imagine the following: we have the dataset on the left of figure
11.22, where, as usual, the triangles represent points with label 1, and the squares represent points
with label 0. Now, we lift the plane at every triangle and push it down at every square. We get the
three-dimensional plot shown on the right of figure 11.22.

To create the classifier, we draw a plane at height 0 and intersect it with our surface. This is the
same as looking at the curve formed by the points at height 0. Imagine if there is a landscape with
mountains and the sea. The curve will correspond to the coastline, namely, where the water and
the land meet. This coastline is the curve shown on the left in figure 11.23. We then project
everything back to the plane and obtain our desired classifier, shown on the right in figure 11.23.

That is the idea behind the RBF kernel. Of course, we have to develop the math, which we will
do in the next few sections. But in principle, if we can imagine lifting and pushing down a blan-
ket, and then building a classifier by looking at the boundary of the points that lie at a particular
height, then we can understand what an RBF kernel is.

https://www.goldensoftware.com/products/grapher

	 Training SVMs with nonlinear boundaries: The kernel method � 337

Figure 11.22  Left: A dataset in the plane that is not linearly separable. Right: We have used the radial basis
functions to raise each of the triangles and lower each of the squares. Notice that now we can separate the
dataset by a plane, which means our modified dataset is linearly separable. (Source: Image created with the
assistance of Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/products/grapher.)

Figure 11.23  Left: If we look at the points at height 0, they form a curve. If we think of the high points as land
and the low points as the sea, this curve is the coastline. Right: When we project (flatten) the points back to the
plane, the coastline is now our classifier that separates the triangles from the squares. (Source: Image created
with the assistance of Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/products/grapher.)

A more in-depth look at radial basis functions

Radial basis functions can exist in any number of variables. At the beginning of this section, we
saw them in one and two variables. For one variable, the simplest radial basis function has the

https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher

338	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

formula
2

 xy e −= . This looks like a bump over the line (figure 11.24). It looks a lot like a standard
normal (Gaussian) distribution. The standard normal distribution is similar, but it has a slightly
different formula, so that the area underneath it is 1.

Figure 11.24  An example of a radial basis function. It looks a lot like a normal (Gaussian) distribution.

Notice that this bump happens at 0. If we wanted it to appear at any different point, say p, we can

translate the formula and get ()2

 x py e − −= . For example, the radial basis function centered at the

point 5 is precisely ()2
5 xy e − −= .

For two variables, the formula for the most basic radial basis function is
2 2() x yz e − += , and it

looks like the plot shown in figure 11.25. Again, you may notice that it looks a lot like a mul-
tivariate normal distribution. It is, again, a modified version of the multivariate normal
distribution.

Figure 11.25  A radial basis function on two variables. It again looks a lot like a normal distribution. (Source:
Image created with the assistance of Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/
products/grapher.)

https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher

	 Training SVMs with nonlinear boundaries: The kernel method � 339

This bump happens exactly at the point (0,0). If we wanted it to appear at any different point, say

(p, q), we can translate the formula, and get
() ()2 2

x p y q

y e
 − − + − = . For example, the radial basis func-

tion centered at the point (2, –3) is precisely
() ()2 2

2 3

x y
y e

 − − + + = .

For n variables, the formula for the basic radial basis function is ()2 2
1 nx x

y e
− + +

=


. We can’t draw
a plot in n + 1 dimensions, but if we imagine pinching an n-dimensional blanket and lifting it up
with our fingers, that’s how it looks. However, because the algorithm that we use is purely math-
ematical, the computer has no trouble running it in as many variables as we want. As usual, this
n-dimensional bump is centered at 0, but if we wanted it centered at the point (p

1
, …, p

n
), the

formula is
()2 2

1 1 ()

n nx p x p
y e

 − − + + − =


.

A measure of how close points are: Similarity

To build an SVM using the RBF kernel, we need one notion: the notion of similarity. We say that
two points are similar if they are close to each other, and not similar if they are far away (figure
11.26). In other words, the similarity between two points is high if they are close to each other and
low if they are far away from each other. If the pair of points are the same point, then the similarity
is 1. In theory, the similarity between two points that are an infinite distance apart is 0.

Similarity: low

Similarity: high

Figure 11.26  Two points that are close to each other are defined to have high similarity. Two points that are far
away are defined to have low similarity.

Now we need to find a formula for similarity. As we can see, the similarity between two points
decreases as the distance between them increases. Thus, many formulas for similarity would
work, as long as they satisfy that condition. Because we are using exponential functions in this
section, let’s define it as follows. For points p and q, the similarity between p and q is as follows:

similarity(p,q)= e–distance(p,q)2

That looks like a complicated formula for similarity, but there is a very nice way to look at it. If
we want to find the similarity between two points, say p and q, this similarity is precisely the
height of the radial basis function centered at p and applied at the point q. This is, if we pinch the
blanket at point p and lift it, then the height of the blanket at point q is high if the q is close to p
and low if q is far from p. In figure 11.27, we can see this for one variable, but imagine it in any
number of variables by using the blanket analogy.

340	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

Distance

Similarity

Figure 11.27  The similarity is defined as the height of a point in the radial basis function, where the input is the
distance. Note that the higher the distance, the lower the similarity, and vice versa.

Training an SVM with the RBF kernel
Now that we have all the tools to train an SVM using the RBF kernel, let’s see how to put it all
together. Let’s first look at the simple dataset displayed in figure 11.19. The dataset itself appears
in table 11.6.

Table 11.6  The one-dimensional dataset shown in figure 11.19. Note that it isn’t linearly
separable, because the point with label 0 is right between the two points with label 1.

Point x y (label)

1 –1 1

2 0 0

3 1 1

As we saw, this dataset is not linearly separable. To make it linearly separable, we’ll add a few columns.
The three columns we are adding are the similarity columns, and they record the similarity between
the points. The similarity between two points with x-coordinates x

1
 and x

2
 is measured as

2
1 2()x xe − , as

indicated in the section “Using bumps in higher dimensions to our benefit.” For example, the simi-
larity between points 1 and 2 is

2(1 0)e − − =0.368. In the Sim1 column, we’ll record the similarity
between point 1 and the other three points, and so on. The extended dataset is shown in table 11.7.

Table 11.7  We extend the dataset in table 11.6 by adding three new columns. Each column
corresponds to the similarity of all points with respect to each point. This extended dataset
lives in a four-dimensional space, and it is linearly separable.

Point x Sim1 Sim2 Sim3 y

1 –1 1 0.368 0.018 1

2 0 0.368 1 0.368 0

3 1 0.018 0.368 1 1

	 Training SVMs with nonlinear boundaries: The kernel method � 341

This extended dataset is now linearly separable! Many classifiers will separate this set, but in
particular, the one with the following boundary equation will:

ŷ = step(Sim1 – Sim2 + Sim3)

Let’s verify this by predicting the label at every point as shown next:

•	 Point 1: ŷ = step(1 – 0.368 + 0.018) = step(0.65) = 1

•	 Point 2: ŷ = step(0.368 – 1 + 0.368) = step(–0.264) = 0

•	 Point 3: ŷ = step(0.018 – 0.368 + 1) = step(0.65) = 1

Furthermore, because
2(1)1 xSim e += ,

2(0)2 xSim e −= , and
2(1)3 xSim e −= then our final classifier makes

the following predictions:

ŷ = step ()2 2 2(1) (1) x x xe e e+ −− +

Now, let’s do this same procedure but in two dimensions. This section does not require code, but
the calculations are large, so if you’d like to take a look at them, they are in the following
notebook: https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_
Machines/Calculating_similarities.ipynb.

Table 11.8  A simple dataset in two dimensions, plotted in figure 11.28. We’ll use an SVM with
an RBF kernel to classify this dataset.

Point x1 x2 y

1 0 0 0

2 –1 0 0

3 0 –1 0

4 0 1 1

5 1 0 1

6 –1 1 1

7 1 –1 1

Consider the dataset in table 11.8, which we already classified graphically (figures 11.22 and
11.23). For convenience, it is plotted again in figure 11.28. In this plot, the points with label 0
appear as squares and those with label 1 as triangles.

Notice that in the first column of table 11.8 and in figure 11.28, we have numbered every point.
This is not part of the data; we did it only for convenience. We will now add seven columns to this
table. The columns are the similarities with respect to every point. For example, for point 1, we add
a similarity column named Sim1. The entry for every point in this column is the amount of simi-
larity between that point and point 1. Let’s calculate one of them, for example, the similarity with
point 6. The distance between point 1 and point 6, by the Pythagorean theorem follows:

 distance(point 1, point 6) = 2 2(0 1) (0 1) 2+ + − =

https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_Machines/Calculating_similarities.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_Machines/Calculating_similarities.ipynb

342	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

51

3

2

46

7

Figure 11.28  The plot of the dataset in table 11.8, where the points with label 0 are squares and those with
label 1 are triangles. Notice that the squares and triangles cannot be separated with a line. We’ll use an SVM with
an RBF kernel to separate them with a curved boundary.

Therefore, the similarity is precisely

 similarity(point 1, point 6)= e –distance(q,p)2
 = e –2 = 0.135.

This number goes in row 1 and column Sim6 (and by symmetry, also in row 6 and column Sim1).
Fill in a few more values in this table to convince yourself that this is the case, or take a look at
the notebook where the whole table is calculated. The result is shown in table 11.9.

Table 11.9  We have added seven similarity columns to the dataset in table 11.8. Each one
records the similarities with all the other six points.

Point x1 x2 Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 y

1 0 0 1 0.368 0.368 0.368 0.368 0.135 0.135 0

2 –1 0 0.368 1 0.135 0.135 0.018 0.368 0.007 0

3 0 –1 0.368 0.135 1 0.018 0.135 0.007 0.368 0

4 0 1 0.368 0.135 0.018 1 0.135 0.368 0.007 1

5 1 0 0.368 0.018 0.135 0.135 1 0.007 0.368 1

6 –1 1 0.135 0.368 0.007 0.367 0.007 1 0 1

7 1 –1 0.135 0.007 0.368 0.007 0.368 0 1 1

	 Training SVMs with nonlinear boundaries: The kernel method � 343

Notice the following things:

1.	 The similarity between each point and itself is always 1.

2.	 For each pair of points, the similarity is high when they are close in the plot and low when
they are far.

3.	 The table consisting of the columns Sim1 to Sim7 is symmetric, because the similarity
between p and q is the same as the similarity between q and p (as it depends only on the
distance between p and q).

4.	 The similarity between points 6 and 7 appears as 0, but in reality, it is not. The distance

between points 6 and 7 is 2 22 2 8+ = , so their similarity is e –8 = 0.00033546262,
which rounds to zero because we are using three significant figures.

Now, on to building our classifier! Notice that for the data in the small table 11.8, no linear clas-
sifier works (because the points can’t be split by a line), but on the much larger table 11.9, which
has a lot more features (columns), we can fit such a classifier. We proceed to fit an SVM to this
data. Many SVMs can classify this dataset correctly, and in the notebook, I’ve used Turi Create
to build one. However, a simpler one works as well. This classifier has the following weights:

•	 The weights of x
1
 and x

2
 are 0.

•	 The weight of Sim p is 1, for p = 1, 2, and 3.

•	 The weight of Sim p is –1, for p = 4, 5, 6, and 7.

•	 The bias is b = 0.

We find the classifier was adding a label –1 to the columns corresponding to the points labeled 0,
and a +1 to the columns corresponding to the points labeled 1. This is equivalent to the process
of adding a mountain at any point of label 1 and a valley at every point of label 0, like in figure
11.29. To check mathematically that this works, take table 11.7, add the values of the columns
Sim4, Sim5, Sim6, and Sim7, then subtract the values of the columns Sim1, Sim2 and Sim3.
You’ll notice that you get a negative number in the first three rows and a positive one in the last
four rows. Therefore, we can use a threshold of 0, and we have a classifier that classifies this data-
set correctly, because the points labeled 1 get a positive score, and the points labeled 0 get a neg-
ative score. Using a threshold of 0 is equivalent to using the coastline to separate the points in the
plot in figure 11.29.

If we plug in the similarity function, the classifier we obtain is the following:

ŷ = step ()2 22 2 2 2 2 2 2 2 2 2 2 2
1 21 2 1 2 1 2 1 2 1 2 1 21 (1) (1) (1) (1) (1) (1) (1) ()x xx x x x x x x x x x x xe e e e e e e+ ++ + + + − − + + + − − + +− − − + + + +

In summary, we found a dataset that was not linearly separable. We used radial basis functions
and similarity between points to add several columns to the dataset. This helped us build a linear
classifier (in a much higher-dimensional space). We then projected the higher-dimensional lin-
ear classifier into the plane to get the classifier we wanted. We can see the resulting curved clas-
sifier in figure 11.29.

344	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

Figure 11.29  In this dataset, we raised each triangle and lowered each square. Then we drew a plane at height
0, which separates the squares and the triangles. The plane intersects the surface in a curved boundary. We then
projected everything back down to two dimensions, and this curved boundary is the one that separates our
triangles from our squares. The boundary is drawn at the right. (Source: Image created with the assistance of
Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/products/grapher.)

Overfitting and underfitting with the RBF kernel: The gamma parameter

At the beginning of this section, we mentioned that many different radial basis functions exist,
namely one per point in the plane. There are actually many more. Some of them lift the plane at
a point and form a narrow surface, and others form a wide surface. Some examples can be seen
in figure 11.30. In practice, the wideness of our radial basis functions is something we want to
tune. For this, we use a parameter called the gamma parameter. When gamma is small, the sur-
face formed is very wide, and when it is large, the surface is very narrow.

Small Medium Large

Figure 11.30  The gamma parameter determines how wide the surface is. Notice that for small values of
gamma, the surface is very wide, and for large values of gamma, the surface is very narrow. (Source: Image
created with the assistance of Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/
products/grapher.)

https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher

	 Training SVMs with nonlinear boundaries: The kernel method � 345

Gamma is a hyperparameter. Recall that hyperparameters are the specifications that we use to
train our model. The way we tune this hyperparameter is using methods that we’ve seen before,
such as the model complexity graph (the section “A numerical way to decide how complex our
model should be” in chapter 4). Different values of gamma tend to overfit and underfit. Let’s look
back at the example at the beginning of this section, with three different values of gamma. The
three models are plotted in figure 11.31.

Small
(underfitting)

Medium
(just right)

Large
(overfitting)

Figure 11.31  Three SVM classifiers shown with an RBF kernel and different values of gamma. (Source: Image
created with the assistance of Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/
products/grapher.)

Notice that for a very small value of gamma, the model overfits, because the curve is too simple, and
it doesn’t classify our data well. For a large value of gamma, the model vastly overfits, because it builds
a tiny mountain for each triangle and a tiny valley for each square. This makes it classify almost every-
thing as a square, except for the areas just around the triangles. A medium value of gamma seems to
work well, because it builds a boundary that is simple enough, yet classifies the points correctly.

The equation for the radial basis function doesn’t change much when we add the gamma
parameter—all we have to do is multiply the exponent by gamma. In the general case, the equa-
tion of the radial basis function follows:

()2 2
1 1 ()

n nx p x p

y e
γ  − − + + − =



Don’t worry very much about learning this formula—just remember that even in higher dimen-
sions, the bumps we make can be wide or narrow. As usual, there is a way to code this and make
it work, which is what we do in the next section.

https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher

346	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

Coding the kernel method
Now that we’ve learned the kernel method for SVMs, we learn code them in Scikit-Learn and
train a model in a more complex dataset using the polynomial and RBF kernels. To train an SVM
in Scikit-Learn with a particular kernel, all we do is add the kernel as a parameter when we define
the SVM. The code for this section follows:

•	 Notebook: SVM_graphical_example.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_
Vector_Machines/SVM_graphical_example.ipynb

•	 Datasets:

	– one_circle.csv

	– two_circles.csv

Coding the polynomial kernel to classify a circular dataset

In this subsection, we see how to code the polynomial kernel in Scikit-Learn. For this, we use the
dataset called one_circle.csv, shown in figure 11.32.

Figure 11.32  A circular dataset, with some noise. We will use an SVM with the polynomial kernel to classify this
dataset.

Notice that aside from some outliers, this dataset is mostly circular. We train an SVM classifier
where we specify the kernel parameter to be poly, and the degree parameter to be 2, as shown
in the next code snippet. The reason we want the degree to be 2 is because the equation of a circle
is a polynomial of degree 2. The result is shown in figure 11.33.

svm_degree_2 = SVC(kernel='poly', degree=2)
svm_degree_2.fit(features, labels)

https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_Machines/SVM_graphical_example.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_Machines/SVM_graphical_example.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_11_Support_Vector_Machines/SVM_graphical_example.ipynb

	 Training SVMs with nonlinear boundaries: The kernel method � 347

Kernel = Polynomial

Degree = 2

Accuracy = 0.891

Figure 11.33  An SVM classifier with a polynomial kernel of degree 2

Notice that this SVM with a polynomial kernel of degree 2 manages to build a mostly circular
region to bound the dataset, as desired.

Coding the RBF kernel to classify a dataset formed by two intersecting circles and playing
with the gamma parameter

We’ve drawn a circle, but let’s get more complicated. In this subsection, we learn how to code
several SVMs with the RBF kernel to classify a dataset that has the shape of two intersecting cir-
cles. This dataset, called two_circles.csv, is illustrated in figure 11.34.

Figure 11.34  A dataset consisting of two intersecting circles, with some outliers. We will use an SVM with the
RBF kernel to classify this dataset.

348	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

To use the RBF kernel, we specify kernel = 'rbf'. We can also specify a value for gamma. We’ll
train four different SVM classifiers, for the following values of gamma: 0.1, 1, 10, and 100, as
shown next:

svm_gamma_01 = SVC(kernel='rbf', gamma=0.1) Gamma = 0.1

svm_gamma_01.fit(features, labels)

svm_gamma_1 = SVC(kernel='rbf', gamma=1) Gamma = 1

svm_gamma_1.fit(features, labels)

svm_gamma_10 = SVC(kernel='rbf', gamma=10) Gamma = 10

svm_gamma_10.fit(features, labels)

svm_gamma_100 = SVC(kernel='rbf', gamma=100) Gamma = 100

svm_gamma_100.fit(features, labels)

Kernel = RBF, Gamma = 0.1

Accuracy = 0.877

Kernel = RBF, Gamma = 1

Accuracy = 0.905

Kernel = RBF, Gamma = 10

Accuracy = 0.964

Kernel = RBF, Gamma = 100

Accuracy = 0.991

Figure 11.35  Four SVM classifiers with an RBF kernel and different values of gamma

The four classifiers appear in figure 11.35. Notice that for gamma = 0.1, the model underfits a
little, because it thinks the boundary is one oval, and it makes some mistakes. Gamma = 1 gives
a good model that captures the data well. By the time we get to gamma = 10, we can see that the
model starts to overfit. Notice how it tries to classify every point correctly, including the outliers,
which it encircles individually. By the time we get to gamma=100, we can see some serious

	 Exercises� 349

overfitting. This classifier only surrounds each triangle with a small circular region and classifies
everything else as a square. Thus, for this model, gamma = 1 seems to be the best value among
the ones we tried.

Summary
•	 A support vector machine (SVM) is a classifier that consists of fitting two parallel lines

(or hyperplanes), and trying to space them as far apart as possible, while still trying to
classify the data correctly.

•	 The way to build support vector machines is with an error function that comprises two
terms: the sum of two perceptron errors, one per parallel line, and the distance error,
which is high when the two parallel lines are far apart and low when they are close
together.

•	 We use the C parameter to regulate between trying to classify the points correctly and
trying to space out the lines. This is useful while training because it gives us control over
our preferences, namely, if we want to build a classifier that classifies the data very well,
or a classifier with a well-spaced boundary.

•	 The kernel method is a useful and very powerful tool for building nonlinear classifiers.

•	 The kernel method consists of using functions to help us embed our dataset inside a
higher-dimensional space, in which the points may be easier to classify with a linear
classifier. This is equivalent to adding columns to our dataset in a clever way to make the
enhanced dataset linearly separable.

•	 Several different kernels, such as the polynomial kernel and the RBF kernel, are available.
The polynomial kernel allows us to build polynomial regions such as circles, parabolas,
and hyperbolas. The RBF kernel allows us to build more complex curved regions.

Exercises
Exercise 11.1

(This exercise completes the calculation needed in the section “Distance error function.”)
Show that the distance between the lines with equations w

1
x

1
 + w

2
x

1
+ b = 1 and w

1
x

1
 + w

2
x

1
+

b = –1 is precisely
2 2

1 2

2

 w w+
.

350	 Chapter 11 I Finding boundaries with style: Support vector machines and the kernel method

Distance =

Exercise 11.2

As we learned in exercise 5.3, it is impossible to build a perceptron model that mimics the XOR
gate. In other words, it is impossible to fit the following dataset (with 100% accuracy) with a
perceptron model:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

This is because the dataset is not linearly separable. An SVM has the same problem, because an
SVM is also a linear model. However, we can use a kernel to help us out. What kernel should we
use to turn this dataset into a linearly separable one? What would the resulting SVM look like?

hint  Look at example 2 in the section “Using polynomial equations to your benefit,” which
solves a very similar problem.

351

In this chapter

•	 what ensemble learning is, and how it is used to combine weak

classifiers into a stronger one

•	 using bagging to combine classifiers in a random way

•	 using boosting to combine classifiers in a cleverer way

•	 some of the most popular ensemble methods: random forests,

AdaBoost, gradient boosting, and XGBoost

Combining models to maximize results:
Ensemble learning

12

Oh no, they’ve
learned ensemble

methods!!

352	 Chapter 12 I Combining models to maximize results: Ensemble learning

After learning many interesting and useful machine learning models, it is natural to wonder if it
is possible to combine these classifiers. Thankfully, we can, and in this chapter, we learn several
ways to build stronger models by combining weaker ones. The two main methods we learn in
this chapter are bagging and boosting. In a nutshell, bagging consists of constructing a few mod-
els in a random way and joining them together. Boosting, on the other hand, consists of building
these models in a smarter way by picking each model strategically to focus on the previous mod-
els’ mistakes. The results that these ensemble methods have shown in important machine learn-
ing problems has been tremendous. For example, the Netflix Prize, which was awarded to the
best model that fits a large dataset of Netflix viewership data, was won by a group that used an
ensemble of different models.

In this chapter, we learn some of the most powerful and popular bagging and boosting mod-
els, including random forests, AdaBoost, gradient boosting, and XGBoost. The majority of these
are described for classification, and some are described for regression. However, most of the
ensemble methods work in both cases.

A bit of terminology: throughout this book, we have referred to machine learning models as
models, or sometimes regressors or classifiers, depending on their task. In this chapter, we intro-
duce the term learner, which also refers to a machine learning model. In the literature, it is com-
mon to use the terms weak learner and strong learner when talking about ensemble methods.
However, there is no difference between a machine learning model and a learner.

All the code for this chapter is available in this GitHub repository: https://github.com/
luisguiserrano/manning/tree/master/Chapter_12_Ensemble_Methods.

With a little help from our friends

Let’s visualize ensemble methods using the following analogy: Imagine that we have to take an
exam that consists of 100 true/false questions on many different topics, including math, geogra-
phy, science, history, and music. Luckily, we are allowed to call our five friends—Adriana, Bob,
Carlos, Dana, and Emily—to help us. There is a small constraint, which is that all of them work
full time, and they don’t have time to answer all 100 questions, but they are more than happy to
help us with a subset of them. What techniques can we use to get their help? Two possible tech-
niques follow:

Technique 1: For each of the friends, pick several random questions, and ask them to answer
them (make sure every question gets an answer from at least one of our friends). After we get the
responses, answer the test by selecting the option that was most popular among those who
answered that question. For example, if two of our friends answered “True” and one answered
“False” on question 1, then we answer question 1 as “True” (if there are ties, we can pick one of
the winning responses randomly).

Technique 2: We give the exam to Adriana and ask her to answer only the questions she is the
surest about. We assume that those answers are good and remove them from the test. Now we

https://github.com/luisguiserrano/manning/tree/master/Chapter_12_Ensemble_Methods
https://github.com/luisguiserrano/manning/tree/master/Chapter_12_Ensemble_Methods

	 With a little help from our friends� 353

give the remaining questions to Bob, with the same instructions. We continue in this fashion
until we pass it to all the five friends.

Technique 1 resembles a bagging algorithm, and technique 2 resembles a boosting algorithm.
To be more specific, bagging and boosting use a set of models called weak learners and combine
them into a strong learner (as illustrated in figure 12.1).

Strong learner

Weak learner 1

Weak learner 2

Weak learner 3

Weak learner 4

Weak learner 5

Figure 12.1  Ensemble methods consist of joining several weak learners to build a strong learner.

Bagging: Build random sets by drawing random points from the dataset (with replacement).
Train a different model on each of the sets. These models are the weak learners. The strong
learner is then formed as a combination of the weak models, and the prediction is done by voting
(if it is a classification model) or averaging the predictions (if it is a regression model).

Boosting: Start by training a random model, which is the first weak learner. Evaluate it on the
entire dataset. Shrink the points that have good predictions, and enlarge the points that have
poor predictions. Train a second weak learner on this modified dataset. We continue in this
fashion until we build several models. The way to combine them into a strong learner is the same
way as with bagging, namely, by voting or by averaging the predictions of the weak learner. More
specifically, if the learners are classifiers, the strong learner predicts the most common class pre-
dicted by the weak learners (thus the term voting), and if there are ties, by choosing randomly
among them. If the learners are regressors, the strong learner predicts the average of the predic-
tions given by the weak learners.

354	 Chapter 12 I Combining models to maximize results: Ensemble learning

Most of the models in this chapter use decision trees (both for regression and classification) as
the weak learners. We do this because decision trees lend themselves very well to this type of
approach. However, as you read the chapter, I encourage you to think of how you would combine
other types of models, such as perceptrons and SVMs.

We’ve spent an entire book building very good learners. Why do we want to combine several
weak learners instead of simply building a strong learner from the start? One reason is that
ensemble methods have been shown to overfit much less than other models. In a nutshell, it is
easy for one model to overfit, but if you have several models for the same dataset, the combina-
tion of them overfits less. In a sense, it seems that if one learner makes a mistake, the others tend
to correct it, and on average, they work better.

We learn the following models in this chapter. The first one is a bagging algorithm, and the
last three are boosting:

•	 Random forests

•	 AdaBoost

•	 Gradient boosting

•	 XGBoost

All these models work for regression and classification. For educational purposes, we learn the
first two as classification models and the last two as regression models. The process is similar for
both classification and regression. However, read each of them and imagine how it would work
in both cases. To learn how all these algorithms work for classification and regression, see the
links to videos and reading material in appendix C that explain both cases in detail.

Bagging: Joining some weak learners randomly
to build a strong learner
In this section we see one of the most well-known bagging models: a random forest. In a random
forest, the weak learners are small decision trees trained on random subsets of the dataset.
Random forests work well for classification and regression problems, and the process is similar.
We will see random forests in a classification example. The code for this section follows:

•	 Notebook: Random_forests_and_AdaBoost.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_
Methods/Random_forests_and_AdaBoost.ipynb

We use a small dataset of spam and ham emails, similar to the one we used in chapter 8 with the
naive Bayes model. The dataset is shown in table 12.1 and plotted in figure 12.2. The features of
the dataset are the number of times the words “lottery” and “sale” appear in the email, and the
“yes/no” label indicates whether the email is spam (yes) or ham (no).

https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_Methods/Random_forests_and_AdaBoost.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_Methods/Random_forests_and_AdaBoost.ipynb

	 Bagging: Joining some weak learners randomly to build a strong learner � 355

Table 12.1  Table of spam and ham emails, together with the number of appearances of the
words “lottery” and “sale” on each email

Lottery Sale Spam

7 8 1

3 2 0

8 4 1

2 6 0

6 5 1

9 6 1

8 5 0

7 1 0

1 9 1

4 7 0

1 3 0

3 10 1

2 2 1

9 3 0

5 3 0

10 1 0

5 9 1

10 8 1

Figure 12.2  The plot of the dataset in table 12.1. Spam emails are represented by triangles and ham emails by
squares. The horizontal and vertical axes represent the number of appearances of the words “lottery” and “sale,”
respectively.

356	 Chapter 12 I Combining models to maximize results: Ensemble learning

First, (over)fitting a decision tree

Before we get into random forests, let’s fit a decision tree classifier to this data and see how
well it performs. Because we’ve learned this in chapter 9, figure 12.3 shows only the final
result, but we can see the code in the notebook. On the left of figure 12.3, we can see the
actual tree (quite deep!), and on the right, we can see the plot of the boundary. Notice that it
fits the dataset very well, with a 100% training accuracy, although it clearly overfits. The
overfitting can be noticed on the two outliers that the model tries to classify correctly, without
noticing they are outliers.

Figure 12.3  Left: A decision tree that classifies our dataset. Right: The boundary defined by this decision tree.
Notice that it splits the data very well, although it hints at overfitting, because a good model would treat the
two isolated points as outliers, instead of trying to classify them correctly.

In the next sections, we see how to solve this overfitting problem by fitting a random forest.

Fitting a random forest manually

In this section, we learn how to fit a random forest manually, although this is only for educa-
tional purposes, because this is not the way to do it in practice. In a nutshell, we pick random
subsets from our dataset and train a weak learner (decision tree) on each one of them. Some data
points may belong to several subsets, and others may belong to none. The combination of them

	 Bagging: Joining some weak learners randomly to build a strong learner � 357

is our strong learner. The way the strong learner makes predictions is by letting the weak learners
vote. For this dataset, we use three weak learners. Because the dataset has 18 points, let’s consider
three subsets of 6 data points each, as shown in figure 12.4.

Subset 1 Subset 2 Subset 3

Figure 12.4  The first step to build a random forest is to split our data into three subsets. This is a splitting of the
dataset shown in figure 12.2.

Next, we proceed to build our three weak learners. Fit a decision tree of depth 1 on each of these
subsets. Recall from chapter 9 that a decision tree of depth 1 contains only one node and two
leaves. Its boundary consists of a single horizontal or vertical line that splits the dataset as best as
possible. The weak learners are illustrated in figure 12.5.

Weak learner 1 Weak learner 2 Weak learner 3

Figure 12.5  The three weak learners that form our random forest are decision trees of depth 1. Each decision
tree fits one of the corresponding three subsets from figure 12.4.

We combine these into a strong learner by voting. In other words, for any input, each of the weak
learners predicts a value of 0 or 1. The prediction the strong learner makes is the most common
output of the three. This combination can be seen in figure 12.6, where the weak learners are on
the top and the strong learner on the bottom.

Note that the random forest is a good classifier, because it classifies most of the points cor-
rectly, but it allows a few mistakes in order to not overfit the data. However, we don’t need to
train these random forests manually, because Scikit-Learn has functions for this, which we see in
the next section.

358	 Chapter 12 I Combining models to maximize results: Ensemble learning

Vote

Weak learner 1 Weak learner 2 Weak learner 3

Strong learner (random forest)

Vote Vote

Figure 12.6  The way to obtain the predictions of the random forest is by combining the predictions of the
three weak learners. On the top, we can see the three boundaries of the decision trees from figure 12.5. On the
bottom, we can see how the three decision trees vote to obtain the boundary of the corresponding random
forest.

Training a random forest in Scikit-Learn
In this section, we see how to train a random forest using Scikit-Learn. In the following code, we
make use of the RandomForestClassifier package. To begin, we have our data in two Pandas
DataFrames called features and labels, as shown next:

from sklearn.ensemble import RandomForestClassifier
random_forest_classifier = RandomForestClassifier(random_state=0,

n_estimators=5, max_depth=1)
random_forest_classifier.fit(features, labels)
random_forest_classifier.score(features, labels)

In the previous code, we specified that we want five weak learners with the n_estimators
hyperparameter. These weak learners are again decision trees, and we have specified that their
depth is 1 with the max_depth hyperparameter. The plot of the model is shown in figure 12.7.
Note how this model makes some mistakes but manages to find a good boundary, where the
spam emails are those with a lot of appearances of the words “lottery” and “sale” (top right of
the plot) and the ham emails are those with not many appearances of these words (bottom left
of the figure).

	 Bagging: Joining some weak learners randomly to build a strong learner � 359

Figure 12.7  The boundary of the random forest obtained with Scikit-Learn. Notice that it classifies the dataset
well, and it treats the two misclassified points as outliers, instead of trying to classify them correctly.

Scikit-Learn also allows us to visualize and plot the individual weak learners (see the notebook
for the code). The weak learners are shown in figure 12.8. Notice that not all the weak learners
are useful. For instance, the first one classifies every point as ham.

Weak learner 1

Weak learner 2

Weak learner 3

Weak learner 4

Weak learner 5

Figure 12.8  The random forest is formed by five weak learners obtained using Scikit-Learn. Each one is a
decision tree of depth 1. They combine to form the strong learner shown in figure 12.7.

360	 Chapter 12 I Combining models to maximize results: Ensemble learning

In this section, we used decision trees of depth 1 as weak learners, but in general, we can use trees
of any depth we want. Try retraining this model using decision trees of higher depth by varying the
max_depth hyperparameter, and see what the random forest looks like!

AdaBoost: Joining weak learners in a clever way
to build a strong learner
Boosting is similar to bagging in that we join several weak learners to build a strong learner. The
difference is that we don’t select the weak learners at random. Instead, each learner is built by focus-
ing on the weaknesses of the previous learners. In this section, we learn a powerful boosting tech-
nique called AdaBoost, developed by Freund and Schapire in 1997 (see appendix C for the reference).
AdaBoost is short for adaptive boosting, and it works for regression and classification. However, we
will use it in a classification example that illustrates the training algorithm very clearly.

In AdaBoost, like in random forests, each weak learner is a decision tree of depth 1. Unlike
random forests, each weak learner is trained on the whole dataset, rather than on a portion of it.
The only caveat is that after each weak learner is trained, we modify the dataset by enlarging the
points that have been incorrectly classified, so that future weak learners pay more attention to
these. In a nutshell, AdaBoost works as follows:

Pseudocode for training an AdaBoost model

•	 Train the first weak learner on the first dataset.

•	 Repeat the following step for each new weak learner:

	– After a weak learner is trained, the points are modified as follows:

	– The points that are incorrectly classified are enlarged.

	– Train a new weak learner on this modified dataset.

In this section, we develop this pseudocode in more detail over an example. The dataset we use
has two classes (triangles and squares) and is plotted in figure 12.9.

Figure 12.9  The dataset that we will classify using AdaBoost. It has two labels represented by a triangle and a
square.

	 AdaBoost: Joining weak learners in a clever way to build a strong learner � 361

A big picture of AdaBoost: Building the weak learners
Over the next two subsections, we see how to build an AdaBoost model to fit the dataset shown
in figure 12.9. First we build the weak learners that we’ll then combine into one strong learner.

The first step is to assign to each of the points a weight of 1, as shown on the left of figure 12.10.
Next, we build a weak learner on this dataset. Recall that the weak learners are decision trees of
depth 1. A decision tree of depth 1 corresponds to the horizontal or vertical line that best splits
the points. Several such trees do the job, but we’ll pick one—the vertical line illustrated in the
middle of figure 12.10—which correctly classifies the two triangles to its left and the five squares
to its right, and incorrectly classifies the three triangles to its right. The next step is to enlarge the
three incorrectly classified points to give them more importance under the eyes of future weak
learners. To enlarge them, recall that each point initially has a weight of 1. We define the rescaling
factor of this weak learner as the number of correctly classified points divided by the number of

incorrectly classified points. In this case, the rescaling factor is =
7

2.33
3

. We proceed to rescale

every misclassified point by this rescaling factor, as illustrated on the right of figure 12.10.

11
1

1

1
1

1
1

1

1

1
2.33

2.33

2.33

1
1

1
1

1

1

11
1

1

1
1

1
1

1

1

Add a weight of 1
to every point.

Fit a weak learner.
Correct: 7

Incorrect: 3

Rescale misclassified
points by 7/3.

Figure 12.10  Fitting the first weak learner of the AdaBoost model. Left: The dataset, where each point gets
assigned a weight of 1. Middle: A weak learner that best fits this dataset. Right: The rescaled dataset, where we
have enlarged the misclassified points by a rescaling factor of 7/3.

Now that we’ve built the first weak learner, we build the next ones in the same manner. The
second weak learner is illustrated in figure 12.11. On the left of the figure, we have the rescaled
dataset. The second weak learner is one that fits this dataset best. What do we mean by that?
Because points have different weights, we want the weak learner for which the sum of the
weights of the correctly classified points is the highest. This weak learner is the horizontal line
in the middle of figure 12.11. We now proceed to calculate the rescaling factor. We need to
slightly modify its definition, because the points now have weights. The rescaling factor is the
ratio between the sum of the weights of the correctly classified points and the sum of the
weights of the incorrectly classified points. The first term is 2.33 + 2.33 + 2.33 + 1 + 1 + 1 + 1

= 11, and the second is 1 + 1 + 1 = 3. Thus, the rescaling factor is
11

3.67
3

= . We proceed to

362	 Chapter 12 I Combining models to maximize results: Ensemble learning

multiply the weights of the three misclassified points by this factor of 3.67, as illustrated on the
right of figure 12.11.

The rescaled
dataset

Fit a weak learner.
Sum of correct: 11
Sum of incorrect: 3

Rescale misclassified
points by 11/3.

1
2.33

2.33

2.33

1
1

1
1

1

1

1
2.33

2.33

2.33

1
1

1
1

1

1

3.672.33
2.33

2.33

1
1

1
13.67

3.67

Figure 12.11  Fitting the second weak learner of the AdaBoost model. Left: The rescaled dataset from figure 12.10.
Middle: A weak learner that best fits the rescaled dataset—this means, the weak learner for which the sum of
weights of the correctly classified points is the largest. Right: The new rescaled dataset, where we have enlarged
the misclassified points by a rescaling factor of 11/3.

We continue in this fashion until we’ve built as many weak learners as we want. For this example,
we build only three weak learners. The third weak learner is a vertical line, illustrated in
figure 12.12.

Figure 12.12  Fitting the third weak learner of the AdaBoost model. Left: The rescaled dataset from figure 12.11.
Right: A weak learner that best fits this rescaled dataset.

	 AdaBoost: Joining weak learners in a clever way to build a strong learner � 363

This is how we build the weak learners. Now, we need to combine them into a strong learner.
This is similar to what we did with random forests, but using a little more math, as shown in the
next section.

Combining the weak learners into a strong learner
Now that we’ve built the weak learners, in this section, we learn an effective way to combine
them into a strong learner. The idea is to get the classifiers to vote, just as they did in the random
forest classifier, but this time, good learners get more of a say than poor learners. In the event that
a classifier is really bad, then its vote will actually be negative.

To understand this, imagine we have three friends: Truthful Teresa, Unpredictable Umbert,
and Lying Lenny. Truthful Teresa almost always tells the truth, Lying Lenny almost always lies,
and Unpredictable Umbert says the truth roughly half of the time and lies the other half. Out of
these three friends, which is the least useful one?

The way I see it, Truthful Teresa is very reliable, because she almost always tells the truth, so
we can trust her. Among the other two, I prefer Lying Lenny. If he almost always lies when we ask
him a yes-or-no question, we simply take as truth the opposite of what he tells us, and we’ll be
correct most of the time! On the other hand, Unpredictable Umbert serves us no purpose if we
have no idea whether he’s telling the truth or lying. In that case, if we were to assign a score to
what each friend says, I’d give Truthful Teresa a high positive score, Lying Lenny a high negative
score, and Unpredictable Umbert a score of zero.

Now imagine that our three friends are weak learners trained in a dataset with two classes.
Truthful Teresa is a classifier with very high accuracy, Lying Lenny is one with very low accuracy,
and Unpredictable Umbert is one with an accuracy close to 50%. We want to build a strong
learner where the prediction is obtained by a weighted vote from the three weak learners. Thus,
to each of the weak learners, we assign a score, and that is how much the vote of the learner will
count in the final vote. Furthermore, we want to assign these scores in the following way:

•	 The Truthful Teresa classifier gets a high positive score.

•	 The Unpredictable Umbert classifier gets a score close to zero.

•	 The Lying Lenny classifier gets a high negative score.

In other words, the score of a weak learner is a number that has the following properties:

1.	 Is positive when the accuracy of the learner is greater than 0.5

2.	 Is 0 when the accuracy of the model is 0.5

3.	 Is negative when the accuracy of the learner is smaller than 0.5

4.	 Is a large positive number when the accuracy of the learner is close to 1

5.	 Is a large negative number when the accuracy of the learner is close to 0

To come up with a good score for a weak learner that satisfies properties 1–5 above, we use a
popular concept in probability called the logit, or log-odds, which we discuss next.

364	 Chapter 12 I Combining models to maximize results: Ensemble learning

Probability, odds, and log-odds

You may have seen in gambling that probabilities are never mentioned, but they always talk
about odds. What are these odds? They are similar to probability in the following sense: if we run
an experiment many times and record the number of times a particular outcome occurred, the
probability of this outcome is the number of times it occurred divided by the total number of
times we ran the experiment. The odds of this outcome are the number of times it occurred
divided by the number of times it didn’t occur.

For example, the probability of obtaining 1 when we roll a die is
1

6
, but the odds are

1

5
. If a par-

ticular horse wins 3 out of every 4 races, then the probability of that horse winning a race is
3

4
,

and the odds are
3

3
1

= . The formula for odds is simple: if the probability of an event is x, then the

odds are
1

x

x− . For instance, in the dice example, the probability is
1

6
 and the odds are

1
16

1 51
6

=
−

.

Notice that because the probability is a number between 0 and 1, then the odds are a number
between 0 and ¥.

Now let’s get back to our original goal. We are looking for a function that satisfies properties
1–5 above. The odds function is close, but not quite there, because it outputs only positive values.
The way to turn the odds into a function that satisfies properties 1–5 above is by taking the log-
arithm. Thus, we obtain the log-odds, also called the logit, defined as follows:

log-odds()
1

x
x ln

x
=

−

Figure 12.13 shows the graph of the log-odds function
1

x
y ln

x
 =   − . Notice that this function

satisfies properties 1–5.
Therefore, all we need to do is use the log-odds function to calculate the score of each of the

weak learners. We apply this log-odds function on the accuracy. Table 12.2 contains several val-
ues for the accuracy of a weak learner and the log-odds of this accuracy. Notice that, as desired,
models with high accuracy have high positive scores, models with low accuracy have high nega-
tive scores, and models with accuracy close to 0.5 have scores close to 0.

	 AdaBoost: Joining weak learners in a clever way to build a strong learner � 365

accuracy

1 – accur cya
ln

Accuracy

y
High-accuracy

model

50% accuracy
model

Low-accuracy
model

Figure 12.13  The curve shows the plot of the log-odds function with respect to the accuracy. Notice that for
small values of the accuracy, the log-odds is a very large negative number, and for higher values of the accuracy,
it is a very large positive number. When the accuracy is 50% (or 0.5), the log-odds is precisely zero.

Table 12.2  Several values for the accuracy of a weak classifier, with the corresponding score,
calculated using the log-odds. Notice that the models with very low accuracy get large negative
scores, the values with very high accuracy get large positive scores, and the values with accuracy
close to 0.5 get scores close to 0.

Accuracy Log-odds (score of the weak learner)

0.01 –4.595

0.1 –2.197

0.2 –1.386

0.5 0

0.8 1.386

0.9 2.197

0.99 4.595

366	 Chapter 12 I Combining models to maximize results: Ensemble learning

Combining the classifiers

Now that we’ve settled on the log-odds as the way to define the scores for all the weak learners,
we can proceed to join them to build the strong learner. Recall that the accuracy of a weak learner
is the sum of the scores of the correctly classified points divided by the sum of the scores of all
the points, as shown in figures 12.10–12.12.

•	 Weak learner 1:

	– Accuracy:
7

10

	– Score:
7

0.847
3

ln
  =  

•	 Weak learner 2:

	– Accuracy:
11

14

	– Score:
11

1.299
3

ln
  =  

•	 Weak learner 3:

	– Accuracy:
19

22

	– Score:
19

1.846
3

ln
  =  

The prediction that the strong learner makes is obtained by the weighted vote of the weak classi-
fiers, where each classifier’s vote is its score. A simple way to see this is to change the predictions
of the weak learners from 0 and 1 to –1 and 1, multiplying each prediction by the score of the
weak learner, and adding them. If the resulting prediction is greater than or equal to zero, then
the strong learner predicts a 1, and if it is negative, then it predicts a 0. The voting process is illus-
trated in figure 12.14, and the predictions in figure 12.15. Notice also in figure 12.15 that the
resulting classifier classified every point in the dataset correctly.

	 AdaBoost: Joining weak learners in a clever way to build a strong learner � 367

Weak learner 1 Weak learner 2 Weak learner 3

Strong learner

0.847 1.299 1.846

+1

+1

–1+1

–0.847
–1.299

+1.846

+0.847
–1.299

+1.846

–0.847
–1.299
–1.846

–0.847
+1.299
–1.846

–0.847
+1.299
+1.846

+0.847
+1.299
+1.846

–1

–1

Figure 12.14  How to combine the weak learners into a strong learner in the AdaBoost model. We score each of
the weak learners using the log-odds and make them vote based on their scores (the larger the score, the more
voting power that particular learner has). Each of the regions in the bottom diagram has the sum of the scores of
the weak learners. Note that to simplify our calculations, the predictions from the weak learners are +1 and –1,
instead of 1 and 0.

Votes

–0.31.394 –3.992

–1.3942.2983.992

Predictions

1

1

1 0

0 0

Figure 12.15  How to obtain the predictions for the AdaBoost model. Once we have added the scores coming
from the weak learners (shown in figure 12.14), we assign a prediction of 1 if the sum of scores is greater than or
equal to 0 and a prediction of 0 otherwise.

368	 Chapter 12 I Combining models to maximize results: Ensemble learning

Coding AdaBoost in Scikit-Learn
In this section, we see how to use Scikit-Learn to train an AdaBoost model. We train it on the
same spam email dataset that we used in the section “Fitting a random forest manually” and
plotted in figure 12.16. We continue using the following notebook from the previous sections:

•	 Notebook: Random_forests_and_AdaBoost.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_
Methods/Random_forests_and_AdaBoost.ipynb

Figure 12.16  In this dataset, we train an AdaBoost classifier using Scikit-Learn. This is the same spam dataset
from the section “Bagging,” where the features are the number of appearances of the words “lottery” and
“spam,” and the spam emails are represented by triangles and the ham emails by squares.

The dataset is in two Pandas DataFrames called features and labels. The training is done
using the AdaBoostClassifier package in Scikit-Learn. We specify that this model will use six
weak learners with the n_estimators hyperparameter, as shown next:

from sklearn.ensemble import AdaBoostClassifier
adaboost_classifier = AdaBoostClassifier(n_estimators=6)
adaboost_classifier.fit(features, labels)
adaboost_classifier.score(features, labels)

The boundary of the resulting model is plotted in figure 12.17.
We can go a bit further and explore the six weak learners and their scores (see notebook for the

code). Their boundaries are plotted in figure 12.18, and as is evident in the notebook, the scores
of all the weak learners are 1.

https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_Methods/Random_forests_and_AdaBoost.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_Methods/Random_forests_and_AdaBoost.ipynb

	 AdaBoost: Joining weak learners in a clever way to build a strong learner � 369

Figure 12.17  The result of the AdaBoost classifier on the spam dataset in figure 12.16. Notice that the classifier
does a good job fitting the dataset and doesn’t overfit much.

Weak learner 1

Weak learner 4

Weak learner 2 Weak learner 3

Weak learner 5 Weak learner 6

Figure 12.18  The six weak learners in our AdaBoost model. Each one of them is a decision tree of depth 1. They
combine into the strong learner in figure 12.17.

Note that the strong learner in figure 12.17 is obtained by assigning a score of 1 to each of the
weak learners in figure 12.18 and letting them vote.

370	 Chapter 12 I Combining models to maximize results: Ensemble learning

Gradient boosting: Using decision trees to build
strong learners
In this section, we discuss gradient boosting, one of the most popular and successful machine
learning models currently. Gradient boosting is similar to AdaBoost, in that the weak learners
are decision trees, and the goal of each weak learner is to learn from the mistakes of the previous
ones. One difference between gradient boosting and AdaBoost is that in gradient boosting, we
allow decision trees of depth more than 1. Gradient boosting can be used for regression and clas-
sification, but for clarity, we use a regression example. To use it for classification, we need to
make some small tweaks. To find out more about this, check out links to videos and reading
material in appendix C. The code for this section follows:

•	 Notebook: Gradient_boosting_and_XGBoost.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_
Methods/Gradient_boosting_and_XGBoost.ipynb

The example we use is the same one as in the section “Decision trees for regression” in chapter 9,
in which we studied the level of engagement of certain users with an app. The feature is the age
of the user, and the label is the number of days that the user engages with the app (table 12.3). The
plot of the dataset is shown in figure 12.19.

Figure 12.19  The plot of the user engagement dataset from table 12.3. The horizontal axis represents the age
of the users, and the vertical axis represents the days per week that the user uses our app.

https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_Methods/Gradient_boosting_and_XGBoost.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_Methods/Gradient_boosting_and_XGBoost.ipynb

	 Gradient boosting: Using decision trees to build strong learners� 371

Table 12.3  A small dataset with eight users, their age, and their engagement with our app. The
engagement is measured in the number of days when they opened the app in one week. We’ll fit
this dataset using gradient boosting.

Feature (age) Label (engagement)

10 7

20 5

30 7

40 1

50 2

60 1

70 5

80 4

The idea of gradient boosting is that we’ll create a sequence of trees that fit this dataset. The two
hyperparameters that we’ll use for now are the number of trees, which we set to five, and the learn-
ing rate, which we set to 0.8. The first weak learner is simple: it is the decision tree of depth 0 that
best fits the dataset. A decision tree of depth 0 is simply a node that assigns the same label to each
point in the dataset. Because the error function we are minimizing is the mean square error, then
this optimal value for the prediction is the average value of the labels. The average value of the labels
of this dataset is 4, so our first weak learner is a node that assigns a prediction of 4 to every point.

The next step is to calculate the residual, which is the difference between the label and the
prediction made by this first weak learner, and fit a new decision tree to these residuals. As you
can see, what this is doing is training a decision tree to fill in the gaps that the first tree has left.
The labels, predictions, and residuals are shown in table 12.4.

The second weak learner is a tree that fits these residuals. The tree can be as deep as we’d like,
but for this example, we’ll make sure all the weak learners are of depth at most 2. This tree is shown
in figure 12.20 (together with its boundary), and its predictions are in the rightmost column of
table 12.4. This tree has been obtained using Scikit-Learn; see the notebook for the procedure.

Age ≤ 35

Age ≤ 15

3 2 –2.667 0.5

True False

Age ≤ 65

Figure 12.20  The second weak learner in the gradient boosting model. This learner is a decision tree of depth
2 pictured on the left. The predictions of this weak learner are shown on the plot on the right.

372	 Chapter 12 I Combining models to maximize results: Ensemble learning

Table 12.4  The predictions from the first weak learner are the average of the labels. The
second weak learner is trained to fit the residuals of the first weak learner.

Feature (age) Label
(engagement)

Prediction from
weak learner 1 Residual Prediction from

weak learner 2

10 7 4 3 3

20 5 4 2 2

30 7 4 3 2

40 1 4 –3 –2.667

50 2 4 –2 –2.667

60 1 4 –3 –2.667

70 5 4 1 0.5

80 4 4 0 0.5

The idea is to continue in this fashion, calculating new residuals and training a new weak learner
to fit these residuals. However, there’s a small caveat—to calculate the prediction from the first two
weak learners, we first multiply the prediction of the second weak learner by the learning rate.
Recall that the learning rate we’re using is 0.8. Thus, the combined prediction of the first two weak
learners is the prediction of the first one (4) plus 0.8 times the prediction of the second one. We do
this because we don’t want to overfit by fitting our training data too well. Our goal is to mimic the
gradient descent algorithm, by slowly walking closer and closer to the solution, and this is what we
achieve by multiplying the prediction by the learning rate. The new residuals are the original labels
minus the combined predictions of the first two weak learners. These are calculated in table 12.5.

Table 12.5  The labels, the predictions from the first two weak learners, and the residual.
The prediction from the first weak learner is the average of the labels. The prediction from
the second weak learner is shown in figure 12.20. The combined prediction is equal to the
prediction of the first weak learner plus the learning rate (0.8) times the prediction of the
second weak learner. The residual is the difference between the label and the combined
prediction from the first two weak learners.

Label
Prediction
from weak
learner 1

Prediction
from weak
learner 2

Prediction from weak
learner 2 times the

learning rate

Prediction from
weak learners 1

and 2
Residual

7 4 3 2.4 6.4 0.6

5 4 2 1.6 5.6 –0.6

7 4 2 1.6 5.6 1.4

1 4 –2.667 –2.13 1.87 –0.87

2 4 –2.667 –2.13 1.87 0.13

1 4 –2.667 –2.13 1.87 –0.87

5 4 0.5 0.4 4.4 0.6

4 4 0.5 0.4 4.4 –0.4

	 Gradient boosting: Using decision trees to build strong learners� 373

Now we can proceed to fit a new weak learner on the new residuals and calculate the combined
prediction of the first two weak learners. We obtain this by adding the prediction for the first
weak learner and 0.8 (the learning rate) times the sum of the predictions of the second and the
third weak learner. We repeat this process for every weak learner we want to build. Instead of
doing it by hand, we can use the GradientBoostingRegressor package in Scikit-Learn (the code
is in the notebook). The next few lines of code show how to fit the model and make predictions.
Note that we have set the depth of the trees to be at most 2, the number of trees to be five, and
the learning rate to be 0.8. The hyperparameters used for this are max_depth, n_estimators,
and learning_rate. Note, too, that if we want five trees, we must set the n_estimators hyper-
parameter to four, because the first tree isn’t counted.

from sklearn.ensemble import GradientBoostingRegressor
gradient_boosting_regressor = GradientBoostingRegressor(max_depth=2,

n_estimators=4, learning_rate=0.8)
gradient_boosting_regressor.fit(features, labels)
gradient_boosting_regressor.predict(features)

The plot for the resulting strong learner is shown in figure 12.21. Notice that it does a good job
predicting the values.

Figure 12.21  The plot of the predictions of the strong learner in our gradient boosting regressor. Note that the
model fits the dataset quite well.

However, we can go a little further and actually plot the five weak learners we obtain. The details
for this are in the notebook, and the five weak learners are shown in figure 12.22. Notice that the

374	 Chapter 12 I Combining models to maximize results: Ensemble learning

predictions of the last weak learners are much smaller than those of the first ones, because each
weak learner is predicting the error of the previous ones, and these errors get smaller and smaller
at each step.

4

Weak learner 1

Age ≤ 35

Age ≤ 15

3 2 –2.667 0.5

Age ≤ 65

Age ≤ 15

0.6

–0.6 0

Age ≤ 25

Age ≤ 35

Age ≤ 25

0 1.4 –0.533 0.1

Age ≤ 65

Age ≤ 75

Age ≤ 65

–0.007 0.52

–0.48

Weak learner 4

Weak learner 5

Weak learner 2

Weak learner 3

Figure 12.22  The five weak learners in the gradient boosting model. The first one is a decision tree of depth 0
that always predicts the average of the labels. Each successive weak learner is a decision tree of depth at most
2, which fits the residuals from the prediction given by the previous weak learners. Note that the predictions of
the weak learners get smaller, because the residuals get smaller when the predictions of the strong learner get
closer to the labels.

Finally, we can use Scikit-Learn or a manual calculation to see that the predictions are the following:

•	 Age = 10, prediction = 6.87

•	 Age = 20, prediction = 5.11

•	 Age = 30, prediction = 6.71

•	 Age = 40, prediction = 1.43

•	 Age = 50, prediction = 1.43

•	 Age = 60, prediction = 1.43

•	 Age = 70, prediction = 4.90

•	 Age = 80, prediction = 4.10

	 XGBoost: An extreme way to do gradient boosting� 375

XGBoost: An extreme way to do gradient boosting
XGBoost, which stands for extreme gradient boosting, is one of the most popular, powerful, and
effective gradient boosting implementations. Created by Tianqi Chen and Carlos Guestrin in
2016 (see appendix C for the reference), XGBoost models often outperform other classification
and regression models. In this section, we discuss how XGBoost works, using the same regression
example from the section “Gradient boosting: Using decision trees to build strong learners.”

XGBoost uses decision trees as the weak learners, and just like in the previous boosting meth-
ods we learned, each weak learner is designed to focus on the weaknesses of the previous ones.
More specifically, each tree is built to fit the residuals of the predictions of the previous trees.
However, there are some small differences, such as the way we build the trees, which is using a
metric called the similarity score. Furthermore, we add a pruning step to prevent overfitting, in
which we remove the branches of the trees if they don’t satisfy certain conditions. In this section,
we cover this in more detail.

XGBoost similarity score: A new and effective way to measure similarity in a set
In this subsection, we see the main building block of XGBoost, which is a way to measure how
similar the elements of a set are. This metric is aptly called the similarity score. Before we learn it,
let’s do a small exercise. Among the following three sets, which one has the most amount of sim-
ilarity, and which one has the least?

•	 Set 1: {10, –10, 4}

•	 Set 2: {7, 7, 7}

•	 Set 3: {7}

If you said that set 2 has the most amount of similarity and set 1 has the least amount, your intu-
ition is correct. In set 1, the elements are very different from each other, so this one has the least
amount of similarity. Between sets 2 and 3, it’s not so clear, because both sets have the same ele-
ment, but a different number of times. However, set 2 has the number seven appearing three
times, whereas set 3 has it appearing only once. Therefore, in set 2, the elements are more homo-
geneous, or more similar, than in set 3.

To quantify similarity, consider the following metric. Given a set {a
1
, a

2
, …, a

n
}, the similarity

score is the square of the sum of the elements, divided by the number of elements, namely,
2

1 2()na a a

n

+ + +

. Let’s calculate the similarity score for the three sets above, shown next:

•	 Set 1:
2(10 10 4)

 5.33
3

Similarity score
− +

= =

•	 Set 2:
2(7 7 7)

 147
3

Similarity score
+ +

= =

•	 Set 3:
27

 49
1

Similarity score = =

Note that as expected, the similarity score of set 2 is the highest, and that of set 1 is the lowest.

376	 Chapter 12 I Combining models to maximize results: Ensemble learning

note  This similarity score is not perfect. One can argue that the set {1, 1, 1} is more similar
than the set {7, 8, 9}, yet the similarity score of {1, 1, 1} is 3, and the similarity score of {7, 8,
9} is 192. However, for the purposes of our algorithm, this score still works. The main goal
of the similarity score is to be able to separate the large and small values well, and this goal
is met, as we’ll see in the current example.

There is a hyperparameter l associated with the similarity score, which helps prevent overfitting.
When used, it is added to the denominator of the similarity score, which gives the formula

2
1 2()na a a

n l
+ + +

+


. Thus, for example, if l = 2, the similarity score of set 1 is now
2(10 10 4)

3.2.
3 2

− +
=

+

We won’t use the l hyperparameter in our example, but when we get to the code, we’ll see how
to set it to any value we want.

Building the weak learners
In this subsection, we see how to build each one of the weak learners. To illustrate this process,
we use the same example from the section “Gradient boosting,” shown in table 12.3. For conve-
nience, the same dataset is shown in the two leftmost columns of table 12.6. This is a dataset of
users of an app, in which the feature is the age of the users, and the label is the number of days
per week in which they engage with the app. The plot of this dataset is shown in figure 12.19.

Table 12.6  The same dataset as in table 12.3, containing users, their age, and the number of
days per week in which they engaged with our app. The third column contains the predictions
from the first weak learner in our XGBoost model. These predictions are all 0.5 by default. The
last column contains the residual, which is the difference between the label and the prediction.

Feature (age) Label (engagement) Prediction from the first weak learner Residual

10 7 0.5 6.5

20 5 0.5 4.5

30 7 0.5 6.5

40 1 0.5 0.5

50 2 0.5 1.5

60 1 0.5 0.5

70 5 0.5 4.5

80 4 0.5 3.5

The process of training an XGBoost model is similar to that of training gradient boosting trees.
The first weak learner is a tree that gives a prediction of 0.5 to each data point. After building this
weak learner, we calculate the residuals, which are the differences between the label and the pre-
dicted label. These two quantities can be found in the two rightmost columns of table 12.6.

Before we start building the remaining trees, let’s decide how deep we want them to be. To
keep this example small, let’s again use a maximum depth of 2. That means that when we get to

	 XGBoost: An extreme way to do gradient boosting� 377

depth 2, we stop building the weak learners. This is a hyperparameter, which we’ll see in more
detail in the section “Training an XGBoost model in Python.”

To build the second weak learner, we need to fit a decision tree to the residuals. We do this
using the similarity score. As usual, in the root node, we have the entire dataset. Thus, we begin
by calculating the similarity score of the entire dataset as follows:

2(6.5 4.5 6.5 0.5 1.5 0.5 4.5 3.5)
98

8
Similarity

+ + + + + + +
= =

Now, we proceed to split the node using the age feature in all the possible ways, as we did with
decision trees. For each split, we calculate the similarity score of the subsets corresponding to
each of the leaves and add them. That is the combined similarity score corresponding to that
split. The scores are the following:

Split for the root node, with dataset {6.5, 4.5, 6.5, 0.5, 1.5, 0.5, 4.5, 3.5}, and similarity score = 98:

•	 Split at 15:

	– Left node: {6.5}; similarity score: 42.25

	– Right node: {4.5, 6.5, 0.5, 1.5, 0.5, 4.5, 3.5}; similarity score: 66.04

	– Combined similarity score: 108.29

•	 Split at 25:

	– Left node: {6.5, 4.5}; similarity score: 60.5

	– Right node: {6.5, 0.5, 1.5, 0.5, 4.5, 3.5}; similarity score: 48.17

	– Combined similarity score: 108.67

•	 Split at 35:

	– Left node: {6.5, 4.5, 6.5}; similarity score: 102.08

	– Right node: {0.5, 1.5, 0.5, 4.5, 3.5}; similarity score: 22.05

	– Combined similarity score: 124.13

•	 Split at 45:

	– Left node: {6.5, 4.5, 6.5, 0.5}; similarity score: 81

	– Right node: {1.5, 0.5, 4.5, 3.5}; similarity score: 25

	– Combined similarity score: 106

•	 Split at 55:

	– Left node: {6.5, 4.5, 6.5, 0.5, 1.5}; similarity score: 76.05

	– Right node: {0.5, 4.5, 3.5}; similarity score: 24.08

	– Combined similarity score: 100.13

378	 Chapter 12 I Combining models to maximize results: Ensemble learning

•	 Split at 65:

	– Left node: {6.5, 4.5, 6.5, 0.5, 1.5, 0.5}; similarity score: 66.67

	– Right node: {4.5, 3.5}; similarity score: 32

	– Combined similarity score: 98.67

•	 Split at 75:

	– Left node: {6.5, 4.5, 6.5, 0.5, 1.5, 0.5, 4.5}; similarity score: 85.75

	– Right node: {3.5}; similarity score: 12.25

	– Combined similarity score: 98

As shown in these calculations, the split with the best combined similarity score is at age = 35.
This is going to be the split at the root node.

Next, we proceed to split the datasets at each of the nodes in the same way.
Split for the left node, with dataset {6.5, 4.5, 6.5} and similarity score 102.08:

•	 Split at 15:

	– Left node: {6.5}; similarity score: 42.25

	– Right node: {4.5, 6.5}; similarity score: 60.5

	– Similarity score: 102.75

•	 Split at 25:

	– Left node: {6.5, 4.5}; similarity score: 60.5

	– Right node: {6.5}; similarity score: 42.25

	– Similarity score: 102.75

Both splits give us the same combined similarity score, so we can use any of the two. Let’s use the
split at 15. Now, on to the right node.

Split for the right node, with dataset {0.5, 1.5, 0.5, 4.5, 3.5} and similarity score 22.05:

•	 Split at 45:

	– Left node: {0.5}; similarity score: 0.25

	– Right node: {1.5, 0.5, 4.5, 3.5}; similarity score: 25

	– Similarity score: 25.25

•	 Split at 55:

	– Left node: {0.5, 1.5}; similarity score: 2

	– Right node: {0.5, 4.5, 3.5}; similarity score: 24.08

	– Similarity score: 26.08

	 XGBoost: An extreme way to do gradient boosting� 379

•	 Split at 65:

	– Left node: {0.5, 1.5, 0.5}; similarity score: 2.08

	– Right node: {4.5, 3.5}; similarity score: 32

	– Similarity score: 34.08

•	 Split at 75:

	– Left node: {0.5, 1.5, 0.5, 4.5}; similarity score: 12.25

	– Right node: {3.5}; similarity score: 12.25

	– Similarity score: 24.5

From here, we conclude that the best split is at age = 65. The tree now has depth 2, so we stop
growing it, because this is what we decided at the beginning of the algorithm. The resulting tree,
together with the similarity scores at the nodes, is shown in figure 12.23.

Split: Age ≤ 35
Labels: 6.5, 4.5, 6.5, 0.5, 1.5, 0.5, 4.5, 3.5

Similarity score: 98

Labels: 6.5
Similarity score: 42.25

Split: Age ≤ 15
Labels: 6.5, 4.5, 6.5

Similarity score: 102.08

Split: Age ≤ 65
Labels: 0.5, 1.5, 0.5, 4.5, 3.5

Similarit e: 22.05y scor

Labels: 4.5, 6.5
Similarity score: 60.5

Labels: 0.5,1.5, 0.5
Similarity score: 2.08

Labels: 4.5, 3.5
Similarit e: 32y scor

True False

Figure 12.23  The second weak learner in our XGBoost classifier. For each of the nodes, we can see the split
based on the age feature, the labels corresponding to that node, and the similarity score for each set of labels.
The split chosen for each node is the one that maximizes the combined similarity score of the leaves. For each
of the leaves, you can see the corresponding labels and their similarity score.

That’s (almost) our second weak learner. Before we continue building more weak learners, we
need to do one more step to help reduce overfitting.

Tree pruning: A way to reduce overfitting by simplifying the weak learners
A great feature of XGBoost is that it doesn’t overfit much. For this, it uses several hyperparam-
eters that are described in detail in the section “Training an XGBoost model in Python.” One
of them, the minimum split loss, prevents a split from happening if the combined similarity

380	 Chapter 12 I Combining models to maximize results: Ensemble learning

scores of the resulting nodes are not significantly larger than the similarity score of the origi-
nal node. This difference is called the similarity gain. For example, in the root node of our tree,
the similarity score is 98, and the combined similarity score of the nodes is 124.13. Thus, the
similarity gain is 124.13 – 98 = 26.13. Similarly, the similarity gain of the left node is 0.67, and
that of the right node is 12.03, as shown in figure 12.24.

Split: Age ≤ 35
Similarity score: 98

Score: 42.25

Split: Age ≤ 15
Similarity score: 102.08

Split: Age ≤ 65
Similarity score: 22.05

Score: 60.5 Score: 2.08 Score: 32

Gain = 26.13

Gain = 0.67 Gain = 12.03

Prune
this subtree. Age ≤ 35

Age ≤ 65

True False True False

Figure 12.24  On the left, we have the same tree from figure 12.23, with an extra piece of information:
the similarity gain. We obtain this by subtracting the similarity score for each node from the combined
similarity score of the leaves. We only allow splits with a similarity gain higher than 1 (our minimum split loss
hyperparameter), so one of the splits is no longer permitted. This results in the pruned tree on the right, which
now becomes our weak learner.

We’ll set the minimum split loss to 1. With this value, the only split that is prevented is the one
on the left node (age ≤ 15). Thus, the second weak learner looks like the one on the right of
figure 12.24.

Making the predictions

Now that we’ve built our second weak learner, it’s time to use it to make predictions. We
obtain predictions the same way we obtain them from any decision tree, namely, by averag-
ing the labels in the corresponding leaf. The predictions for our second weak learner are seen
in figure 12.25.

Now, on to calculate the combined prediction for the first two weak learners. To avoid over-
fitting, we use the same technique that we used in gradient boosting, which is multiplying the
prediction of all the weak learners (except the first one) by the learning rate. This is meant to
emulate the gradient descent method, in which we slowly converge to a good prediction after
several iterations. We use a learning rate of 0.7. Thus, the combined prediction of the first two
weak learners is equal to the prediction of the first weak learner plus the prediction of the second
weak learner times 0.7. For example, for the first data point, this prediction is

0.5 + 5.83 . 0.7 = 4.58.

	 XGBoost: An extreme way to do gradient boosting� 381

Age ≤ 35

Age ≤ 65Prediction: 5.83

Prediction: 0.83 Prediction: 4

Labels: 6.5, 4.5, 6.5

Labels: 0.5, 1.5, 0.5 Labels: 4.5, 3.5

True False

Figure 12.25  The second weak learner in our XGBoost model after being pruned. This is the same tree from
figure 12.24, with its predictions. The prediction at each leaf is the average of the labels corresponding to that leaf.

The fifth column of table 12.7 contains the combined prediction of the first two weak learners.

Table 12.7  The labels, predictions from the first two weak learners, and the residual. The
combined prediction is obtained by adding the prediction from the first weak learner (which
is always 0.5) plus the learning rate (0.7) times the prediction from the second weak learner.
The residual is again the difference between the label and the combined prediction.

Label
(engagement)

Prediction
from weak
learner 1

Prediction
from weak
learner 2

Prediction from weak
learner 2 times the

learning rate

Combined
prediction Residual

7 0.5 5.83 4.08 4.58 2.42

5 0.5 5.83 4.08 4.58 0.42

7 0.5 5.83 4.08 4.58 2.42

1 0.5 0.83 0.58 1.08 –0.08

2 0.5 0.83 0.58 1.08 0.92

1 0.5 0.83 0.58 1.08 –0.08

5 0.5 4 2.8 3.3 1.7

4 0.5 4 2.8 3.3 0.7

Notice that the combined predictions are closer to the labels than the predictions of the first
weak learner. The next step is to iterate. We calculate new residuals for all the data points, fit a
tree to them, prune the tree, calculate the new combined predictions, and continue in this fash-
ion. The number of trees we want is another hyperparameter that we can choose at the start. To
continue building these trees, we resort to a useful Python package called xgboost.

382	 Chapter 12 I Combining models to maximize results: Ensemble learning

Training an XGBoost model in Python
In this section, we learn how to train the model to fit the current dataset using the xgboost
Python package. The code for this section is in the same notebook as the previous one, shown
here:

•	 Notebook: Gradient_boosting_and_XGBoost.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_
Methods/Gradient_boosting_and_XGBoost.ipynb

Before we start, let’s revise the hyperparameters that we’ve defined for this model:

number of estimators  The number of weak learners. Note: in the xgboost package, the
first weak learner is not counted among the estimators. For this example, we set it to 3,
which will give us four weak learners.

maximum depth  The maximum depth allowed for each one of the decision trees (weak
learners). We set it to 2.

lambda parameter  The number added to the denominator of the similarity score. We set
it to 0.

minimum split loss  The minimum gain in similarity score to allow for a split to happen.
We set it to 1.

learning rate  The predictions from the second to last weak learners are multiplied by the
learning rate. We set it to 0.7.

With the following lines of code, we import the package, build a model called XGBRegressor,
and fit it to our dataset:

import xgboost
from xgboost import XGBRegressor
xgboost_regressor = XGBRegressor(random_state=0,
 n_estimators=3,
 max_depth=2,
 reg_lambda=0,
 min_split_loss=1,
 learning_rate=0.7)
xgboost_regressor.fit(features, labels)

The plot of the model is shown in figure 12.26. Notice that it fits the dataset well.

https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_Methods/Gradient_boosting_and_XGBoost.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_12_Ensemble_Methods/Gradient_boosting_and_XGBoost.ipynb

	 XGBoost: An extreme way to do gradient boosting� 383

Figure 12.26  The plot of the predictions of our XGBoost model. Note that it fits the dataset well.

The xgboost package also allows us to look at the weak learners, and they appear in figure 12.24.
The trees obtained in this fashion already have the labels multiplied by the learning rate of 0.7,
which is clear when compared with the predictions of the tree obtained manually in figure 12.25
and the second tree from the left in figure 12.27.

Age ≤ 35

Age ≤ 654.08

0.58 2.8

0.5 Age ≤ 35

Age ≤ 651.22

0.18 0.84

Age ≤ 15

Age ≤ 250.84

–0.57 0.25

Weak

learner 1

Weak

learner 2

Weak

learner 3

Weak

learner 4

True False True False True False

Figure 12.27  The four weak learners that form the strong learner in our XGBoost model. Note that the first one
always predicts 0.5. The other three are quite similar in shape, which is a coincidence. However, notice that the
predictions from each of the trees get smaller, because each time we are fitting smaller residuals. Furthermore,
notice that the second weak learner is the same tree we obtained manually in figure 12.25, where the only
difference is that in this tree, the predictions are already multiplied by the learning rate of 0.7.

384	 Chapter 12 I Combining models to maximize results: Ensemble learning

Thus, to obtain the predictions of the strong learner, we need to add only the prediction of every
tree. For example, for a user who is 20 years old, the predictions are the following:

•	 Weak learner 1: 0.5

•	 Weak learner 2: 4.08

•	 Weak learner 3: 1.22

•	 Weak learner 4: –0.57

Thus, the prediction is 0.5 + 5.83 + 1.22 – 0.57 = 5.23. The predictions for the other points
follow:

•	 Age = 10; prediction = 6.64

•	 Age = 20; prediction = 5.23

•	 Age = 30; prediction = 6.05

•	 Age = 40; prediction = 1.51

•	 Age = 50; prediction = 1.51

•	 Age = 60; prediction = 1.51

•	 Age = 70; prediction = 4.39

•	 Age = 80; prediction = 4.39

Applications of ensemble methods
Ensemble methods are some of the most useful machine learning techniques used nowadays
because they exhibit great levels of performance with relatively low cost. One of the places where
ensemble methods are used most is in machine learning challenges, such as the Netflix Challenge.
The Netflix Challenge was a competition that Netflix organized, where they anonymized some
data and made it public. The competitors’ goal was to build a better recommendation system
than Netflix itself; the best system would win one million dollars. The winning team used a
powerful combination of learners in an ensemble to win. For more information on this, check
the reference in appendix C.

	 Exercises� 385

Summary
•	 Ensemble methods consist of training several weak learners and combining them into a

strong one. They are an effective way to build powerful models that have had great results
with real datasets.

•	 Ensemble methods can be used for regression and for classification.

•	 There are two major types of ensemble methods: bagging and boosting.

•	 Bagging, or bootstrap aggregating, consists of building successive learners on random
subsets of our data and combining them into a strong learner that makes predictions
based on a majority vote.

•	 Boosting consists of building a sequence of learners, where each learner focuses on the
weaknesses of the previous one, and combining them into a strong classifier that makes
predictions based on a weighted vote of the learners.

•	 AdaBoost, gradient boosting, and XGBoost are three advanced boosting algorithms that
produce great results with real datasets.

•	 Applications of ensemble methods range widely, from recommendation algorithms to
applications in medicine and biology.

Exercises
Exercise 12.1

A boosted strong learner L is formed by three weak learners, L
1
, L

2
, and L

3
. Their weights are 1,

0.4, and 1.2, respectively. For a particular point, L
1
 and L

2
 predict that its label is positive, and L

3

predicts that it’s negative. What is the final prediction the learner L makes on this point?

Exercise 12.2

We are in the middle of training an AdaBoost model on a dataset of size 100. The current weak
learner classifies 68 out of the 100 data points correctly. What is the weight that we’ll assign to
this learner in the final model?

387

In this chapter

•	 cleaning up and preprocessing data to make it readable by our

model

•	 using Scikit-Learn to train and evaluate several models

•	 using grid search to select good hyperparameters for our model

•	 using k-fold cross-validation to be able to use our data for training

and validation simultaneously

Putting it all in practice:
A real-life example of data engineering

and machine learning
13

I’m not concerned.
My model says

I will survive!

388	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

Throughout this book, we’ve learned some of the most important algorithms in supervised
learning, and we’ve had the chance to code them and use them to make predictions on several
datasets. However, the process of training a model on real data requires several more steps, and
this is what we discuss in this chapter.

One of the most fundamental jobs of a data scientist is cleaning and preprocessing the data.
This is crucial because the computer can’t fully do it. To clean data properly, it’s necessary to have
good knowledge of the data and of the problem being solved. In this chapter, we see some of the
most important techniques for cleaning up and preprocessing data. Then we look more carefully
into the features and apply some feature engineering that will get them ready for the model. As a
next step, we split the model into training, validation, and testing sets, train several models on
our dataset, and evaluate them. This way, we’ll be able to pick the best-performing model for this
dataset. Finally, we learn important methods such as grid search to find the best hyperparame-
ters for our model.

We apply all these steps on a popular dataset for learning and practicing machine learning
techniques: the Titanic dataset. We cover this dataset in depth in the following section. This
chapter includes lots of coding. The two Python packages that we use are Pandas and Scikit-
Learn, which we’ve used extensively throughout this book. The Pandas package is good for han-
dling data, including opening files, loading data, and organizing it as tables, called DataFrames.
The Scikit-Learn package is good for training and evaluating models, and it contains solid imple-
mentations of most of the algorithms we learn in this book.

The code and the dataset that we’ll be working with throughout this whole chapter are the
following:

•	 Notebook: End_to_end_example.ipynb

	– https://github.com/luisguiserrano/manning/blob/master/Chapter_13_End_to_end_
example/End_to_end_example.ipynb

•	 Dataset: titanic.csv

The Titanic dataset
In this section, we load and study the dataset. Loading and handling data is a crucial skill for a
data scientist, because the success of the model depends highly on how the data that feeds into it
is preprocessed. We use the Pandas package to do this.

Throughout this chapter, we work with an example that is popular for learning machine
learning: the Titanic dataset. At a high level, the dataset contains information about many of the
passengers in the Titanic, including their name, age, marital status, port of embarkment, and
class. Most importantly, it also contains information about the passenger’s survival. This dataset
can be found in Kaggle (www.kaggle.com), a popular online community with great datasets and
contests, which I highly recommend you check out.

https://github.com/luisguiserrano/manning/blob/master/Chapter_13_End_to_end_example/End_to_end_example.ipynb
https://github.com/luisguiserrano/manning/blob/master/Chapter_13_End_to_end_example/End_to_end_example.ipynb
https://www.kaggle.com/

	 The Titanic dataset� 389

note  The dataset we use is a historic dataset, which, as you may imagine, contains many
societal biases from 1912. Historical datasets do not present the opportunity for revision or
additional sampling to reflect current societal norms and understanding of the world.
Some examples found here are the lack of inclusion of nonbinary genders, different treat-
ment for passengers with respect to gender and social class, and many others. We’ll evaluate
this dataset as if it were a number table, because we believe that it is a very rich and com-
monly used dataset for building models and making predictions. However, as data scien-
tists, it is our duty to always be mindful of biases in our data, such as those concerning race,
gender identity, sexual orientation, social status, ability, nationality, beliefs, and many oth-
ers, and to do everything in our power to ensure that the models we build will not perpet-
uate historical biases.

The features of our dataset
The Titanic dataset we are using contains the names and information of 891 passengers on the
Titanic, including whether they survived. Here are the columns of the dataset:

•	 PassengerID: a number that identifies each passenger, from 1 to 891

•	 Name: the full name of the passenger

•	 Sex: the gender of the passenger (male or female)

•	 Age: the age of the passenger as an integer

•	 Pclass: the class in which the passenger was traveling: first, second, or third

•	 SibSP: the number of siblings and spouse of the passenger (0 if the passenger is traveling
alone)

•	 Parch: the number of parents and children of the passenger (0 if the passenger is
traveling alone)

•	 Ticket: the ticket number

•	 Fare: the fare the passenger paid in British pounds

•	 Cabin: the cabin in which the passenger was traveling

•	 Embarked: the port in which the passenger embarked: “C” for Cherbourg, “Q” for
Queenstown, and “S” for Southampton

•	 Survived: information whether the passenger survived (1) or not (0)

Using Pandas to load the dataset
In this section, we learn how to open a dataset using Pandas and load it into a DataFrame, which
is the object Pandas uses to store tables of data. I have downloaded the data from www.kaggle.
com and stored it as a CSV (comma-separated values) file named titanic.csv. Before we do any-
thing on Pandas, we must import Pandas with the following command:

import pandas

https://www.kaggle.com/

390	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

Now that we have loaded Pandas, we need to load the dataset. For storing datasets, Pandas uses
two objects: the DataFrame and the Series. They are essentially the same thing, except that the
Series is used for datasets of only one column, and the DataFrame is used for datasets of more
than one column.

We can load the dataset as a DataFrame using the following command:

raw_data = pandas.read_csv('./titanic.csv', index_col="PassengerId")

This command stores the dataset into a Pandas DataFrame called raw_data. We call it raw data
because our goal is to clean it and preprocess it later. Once we load it, we can see that the first
rows look like table 13.1. In general, Pandas adds an extra column numbering all the elements in
the dataset. Because the dataset already comes with this numbering, we can set this index to be
that column by specifying index_col="PassengerId". For this reason, we may see that in this
dataset, the rows are indexed starting from 1 instead of starting from 0 as is more common in
practice.

Table 13.1  The Titanic dataset contains information on the passengers on the Titanic, including
whether they survived. Here we use Pandas to open the dataset and print out its rows and
columns. Notice that it has 891 rows and 12 columns.

Pa
ss

en
ge

rI
d

Su
rv

iv
ed

Pc
la

ss

N
am

e

Se
x

A
ge

Si
bS

p

Pa
rc

h

Ti
ck

et

Fa
re

Ca
bi

n

Em
ba

rk
ed

1 0 3 Braund, Mr.
Owen Harris male 22.0 1 0 A/5

21171 7.2500 NaN S

2 1 1

Cumings,
Mrs. John

Bradley
(Florence

Briggs Th...

female 38.0 1 0 PC 17599 71.2833 C85 C

3 1 3 Heikkinen,
Miss Laina female 26.0 0 0 STON/O2.

3101282 7.9250 NaN S

...

890 1 1 Behr, Mr. Karl
Howell male 26.0 0 0 111369 30.0000 C148 C

891 0 3 Dooley, Mr.
Patrick male 32.0 0 0 370376 7.7500 NaN Q

Saving and loading the dataset

Before we embark on studying our dataset, here’s a small step that will help us. At the end of each
section, we’ll save the dataset in a CSV file, and we’ll load it again at the beginning of the next

	 The Titanic dataset� 391

section. This is so we can put down the book or quit the Jupyter Notebook and come back to
work on it later at any checkpoint, without having to rerun all the commands from the begin-
ning. With a small dataset like this one, it is not a big deal to rerun the commands, but imagine
if we were processing large volumes of data. Serializing and saving data is important there,
because it saves time and processing power.

Here are the names of the datasets saved at the end of each section:

•	 “The Titanic dataset”: raw_data

•	 “Cleaning up our dataset”: clean_data

•	 “Feature engineering”: preprocessed_data

The commands for saving and loading follow:

tablename.to_csv('./filename.csv', index=None)
tablename = pandas.read_csv('./filename.csv')

When Pandas loads a dataset, it adds an index column that numbers each of the elements. We
can ignore this column, but when we save the dataset, we must set the parameter index=None to
avoid saving unnecessary index columns.

The dataset already has an index column called PassengerId. If we wanted to instead use this
one as the default index column in Pandas, we could specify index_col='PassengerId' when
we load the dataset (but we won’t do this).

Using Pandas to study our dataset
In this section, I teach you some useful methods for studying our dataset. The first one is the
length function, or len. This function returns the number of rows in the dataset as follows:

len(raw_data)
Output: 891

This means our dataset has 891 rows. To output the names of the columns, we use the columns
property of a DataFrame, as follows:

raw_data.columns
Output: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age',

'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype='object')

Now let’s explore one of the columns. With the following command, we can explore the Survived
column:

raw_data['Survived']
Output:
0, 1, 1, 1, 0, .., 0, 1, 0, 1, 0
Name: Survived, Length: 891, dtype: int64

392	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

The first column is the index of the passenger (1 to 891). The second one is a 0 if the passenger
didn’t survive, and a 1 if the passenger survived. However, if we wanted two columns—for exam-
ple Name and Age—we can use the next command:

raw_data[['Name', 'Age']]

and this would return a DataFrame with only those two columns.
Now let’s say we want to find out how many passengers survived. We can sum up the values in

the Survived column using the sum function, as follows:

sum(raw_data['Survived'])
Output: 342

This indicates that out of the 891 passengers in our dataset, only 342 survived.
This is only the tip of the iceberg in terms of all the functionality that Pandas offers for han-

dling datasets. Visit the documentation page at pandas.pydata.org to learn more about it.

Cleaning up our dataset: Missing values and how
to deal with them
Now that we know how to handle DataFrames, we discuss some techniques to clean up our data-
set. Why is this important? In real life, data can be messy, and feeding messy data into a model
normally results in a bad model. It is important that before training models, the data scientist
explores the dataset well and performs some cleanup to get the data ready for the models.

The first problem we encounter is datasets with missing values. Due to human or computer
errors, or simply due to problems with data collection, datasets don’t always come with all the
values in them. Trying to fit a model to a dataset with missing values will probably result in an
error. The Titanic dataset is not an exception when it comes to missing data. For example, let’s
look at the Cabin column of our dataset, shown here:

raw_data['Cabin']
Output:
0 NaN
1 C85
2 NaN
3 C123
4 NaN
 ...
886 NaN
887 B42
888 NaN
889 C148
890 NaN
Name: Cabin, Length: 891, dtype: object

https://pandas.pydata.org/

	 Cleaning up our dataset: Missing values and how to deal with them � 393

Some cabin names are present, such as C123 or C148, but the majority of the values are NaN.
NaN, or “not a number,” means the entry is either missing, unreadable, or simply another type
that can’t be converted into a number. This could have happened because of clerical errors; one
could imagine that the records of the Titanic are old and some information has been lost, or they
simply didn’t record the cabin number for every passenger to begin with. Either way, we don’t
want to have NaN values in our dataset. We are at a decision point: should we deal with these
NaN values or remove the column completely? First let’s check how many NaN values are in each
column of our dataset. Our decision will depend on the answer to that question.

To find out how many values in each column are NaN, we use the is_na (or is_null) func-
tion. The is_na function returns a 1 if the entry is NaN, and a 0 otherwise. Therefore, if we sum
over these values, we get the number of entries that are NaN in every column, as shown here:

raw_data.isna().sum()
Output:
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2

This tells us that the only columns with missing data are Age, which is missing 177 values; Cabin,
which is missing 687 values; and Embarked, which is missing 2 values. We can deal with missing
data using a few methods, and we’ll apply different ones to different columns for this dataset.

Dropping columns with missing data
When a column is missing too many values, the corresponding feature may not be useful to our
model. In this case, Cabin does not look like a good feature. Out of 891 rows, 687 don’t have a
value. This feature should be removed. We can do it with the drop function in Pandas as follows.
We’ll make a new DataFrame called clean_data to store the data we’re about to clean up:

clean_data = raw_data.drop('Cabin', axis=1)

The arguments to the drop function follow:

•	 The name of the column we want to drop

•	 The axis parameter, which is 1 when we want to drop a column and 0 when we want to
drop a row

We then assign the output of this function to the variable clean_data, indicating that we want
to replace the old DataFrame called data by the new one with the deleted column.

394	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

How to not lose the entire column: Filling in missing data
We don’t always want to delete columns with missing data, because we might lose important
information. We can also fill in the data with values that would make sense. For example, let’s
take a look at the Age column, shown next:

clean_data['Age']
Output:
0 22.0
1 38.0
2 26.0
3 35.0
4 35.0
 ...
886 27.0
887 19.0
888 NaN
889 26.0
890 32.0
Name: Age, Length: 891, dtype: float64

As we calculated previously, the Age column is missing only 177 values out of 891, which is not
that many. This column is useful, so let’s not delete it. What can we do with these missing values,
then? There are many things we can do, but the most common are filling them in with the aver-
age or the median of the other values. Let’s do the latter. First, we calculate the median, using the
median function, and we obtain 28. Next, we use the fillna function, which fills in the missing
values with the value we give it, as shown in the next code snippet:

median_age = clean_data["Age"].median()
clean_data["Age"] = clean_data["Age"].fillna(median_age)

The third column that is missing values is Embarked, which is missing two values. What can we
do here? There is no average we can use, because these are letters, not numbers. Luckily, only two
rows are missing this number among 891 of them, so we are not losing too much information
here. My suggestion is to lump all the passengers with no value in the Embarked column into the
same class. We can call this class U, for “Unknown.” The following line of code will do it:

clean_data["Embarked"] = clean_data["Embarked"].fillna('U')

Finally, we can save this DataFrame in a CSV file called clean_titanic_data to use in the next
section:

clean_data.to_csv('./clean_titanic_data.csv', index=None)

	 Feature engineering: Transforming the features in our dataset before training the models � 395

Feature engineering: Transforming the features
in our dataset before training the models
Now that we’ve cleaned our dataset, we are much closer to being able to train a model. However, we
still need to do some important data manipulations, which we see in this section. The first is trans-
forming the type of data from numerical to categorical, and vice versa. The second is feature selec-
tion, in which we manually decide which features to remove to improve the training of our model.

Recall from chapter 2 that there are two types of features, numerical and categorical. A numer-
ical feature is one that is stored as numbers. In this dataset, features such as the age, fare, and
class are numbers. A categorical feature is one that contains several categories, or classes. For
example, the gender feature contains two classes: female and male. The embarked feature con-
tains three classes, C for Cherbourg, Q for Queenstown, and S for Southampton.

As we have seen throughout this book, machine learning models take numbers as input. If
that is the case, how do we input the word “female,” or the letter “Q”? We need to have a way to
turn categorical features into numerical features. Also, believe it or not, sometimes we may be
interested in treating numerical features as categorical to aid us in our training, such as putting
them in buckets, for example, age 1–10, 11–20, and so on. We cover this more in the section
“Turning numerical data into categorical data.”

Even more, when we think of a feature such as the passenger class (called Pclass), is this truly
a numerical feature, or is it categorical? Should we think of class as a number between one and
three, or as three classes: first, second, and third? We answer all those questions in this section.

In this section, we call the DataFrame preprocessed_data. The first few rows of this dataset
are shown in table 13.2

Table 13.2  The first five rows of the cleaned-up dataset. We will proceed to preprocess this
data for training.

Pa
ss

en
ge

rI
d

Su
rv

iv
ed

Pc
la

ss

N
am

e

Se
x

A
ge

Si
bS

p

Pa
rc

h

Ti
ck

et

Fa
re

Em
ba

rk
ed

1 0 3 Braund, Mr. Owen
Harris male 22.0 1 0 A/5 21171 7.2500 S

2 1 1
Cumings, Mrs. John

Bradley (Florence
Briggs Th...

female 38.0 1 0 PC 17599 71.2833 C

3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2.
3101282 7.9250 S

4 1 1 Futrelle, Mrs. Jacques
Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 S

5 0 3 Allen, Mr. William
Henry male 35.0 0 0 373450 8.0500 S

396	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

Turning categorical data into numerical data: One-hot encoding
As was mentioned previously, machine learning models perform a lot of mathematical opera-
tions, and to perform mathematical operations in our data, we must make sure all the data is
numerical. If we have any columns with categorical data, we must turn them into numbers. In
this section, we learn a way to do this effectively using a technique called one-hot encoding.

But before we delve into one-hot encoding, here’s a question: why not simply attach a different
number to each one of the classes? For example, if our feature has 10 classes, why not number
them 0, 1, 2,..., 9? The reason is that this forces an order in the features that we may not want. For
example, if the Embarked column has the three classes C, Q, and S, corresponding to Cherbourg,
Queenstown, and Southampton, assigning the numbers 0, 1, and 2 to these would implicitly tell
the model that the value of Queenstown is between the values of Cherbourg and Southampton,
which is not necessarily true. A complex model may be able to deal with this implicit ordering,
but simpler models (such as linear models, for example) will suffer. We’d like to make these val-
ues more independent of each other, and this is where one-hot encoding comes in.

One-hot encoding works in the following way: First, we look at how many classes the feature
has and build as many new columns. For example, a column with two categories, female and
male, would turn it into two columns, one for female and one for male. We can call these col-
umns gender_male and gender_female for clarity. Then, we look at each passenger. If the passen-
ger is female, then the gender_female column will have a 1, and the gender_male column will
have a 0. If the passenger is male, then we do the opposite.

What if we have a column with more classes, such as the embarked column? Because that
column has three classes (C for Cherbourg, Q for Queenstown, and S for Southampton), we sim-
ply make three columns called embarked_c, embarked_q, and embarked_s. In that way, if a
passenger embarked in, say, Southampton, the third column will have a 1 and the other two a 0.
This process is illustrated in figure 13.1.

gender_female gender_malegender

Passenger 1 F

Passenger 2 M

Passenger 3 M

Passenger 4 F

embarked_c embarked_q embarked_sembarked

Passenger 1 Q

Passenger 2 S

Passenger 3 C

Passenger 4 S

Passenger 1 1

Passenger 2 0

Passenger 3 0

Passenger 4 1

0

1

1

0

Passenger 1 0

Passenger 2 0

Passenger 3 1

Passenger 4 0

1

0

0

0

0

1

0

1

Figure 13.1  One-hot encoding our data to turn it all into numbers for the machine learning model to read. On
the left, we have columns with categorical features such as gender or port of embarkment. On the right, we have
turned these categorical features into numerical features.

	 Feature engineering: Transforming the features in our dataset before training the models � 397

The Pandas function get_dummies helps us with one-hot encoding. We use it to create some new
columns, then we attach these columns to the dataset, and we must not forget to remove the
original column, because that information is redundant. Next is the code to do one-hot encoding
in the gender and the embarked columns:

Creates columns with the
one-hot encoded columns

gender_columns = pandas.get_dummies(data['Sex'], prefix='Sex')
embarked_columns = pandas.get_dummies(data["Pclass"], prefix="Pclass")

preprocessed_data = pandas.concat([preprocessed_data, gender_columns], axis=1)
preprocessed_data = pandas.concat([preprocessed_data, embarked_columns], axis=1)

preprocessed_data = preprocessed_data.drop(['Sex', 'Embarked'], axis=1)

 Deletes the old columns
from the dataset

Sometimes this process can be expensive. Imagine having a column with 500 classes. That will
add 500 new columns to our table! Not only that, but the rows will be very sparse, namely, they
will contain mostly zeroes. Now imagine if we had many columns with hundreds of classes
each—our table would become too big to handle. In this case, as a data scientist, use your criteria
to make a decision. If there is enough computing power and storage space to handle thousands
or perhaps millions of columns, then one-hot encoding is no problem. If these resources are
limited, perhaps we can broaden our classes to produce fewer columns. For example, if we had a
column with 100 animal types, we can lump them into six columns formed by mammals, birds,
fish, amphibians, invertebrates, and reptiles.

Can we one-hot encode numerical features? If so, why would we want to?

Clearly, if a feature has categories such as male or female, our best strategy is to one-hot encode
it. However, there are some numerical features for which we still may want to consider one-hot
encoding. Let’s look, for example, at the Pclass column. This column has the classes 0, 1, and 2,
for first, second, and third class. Should we keep it as a numerical feature, or should we one-hot
encode it as three features, Pclass1, Pclass2, and Pclass3? This is certainly debatable, and we can
make good arguments on both sides. One may argue that we don’t want to unnecessarily enlarge
a dataset if it doesn’t give the model a potential improvement in performance. There is a rule of
thumb that we can use to decide whether to split a column into several columns. We can ask
ourselves: is this feature directly correlated to the outcome? In other words, does increasing the
value of the feature make it more likely (or less likely) for a passenger to survive? One would
imagine that perhaps the higher the class, the more likely a passenger survived. Let’s see if this is
the case by doing some counting (see code in the notebook), shown next:

•	 In first class, 62.96% of the passengers survived.

•	 In second class, 40.38% of the passengers survived.

•	 In third class, 55% of the passengers survived.

Concatenates the
dataset with the

newly created
columns

398	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

Notice that the lowest possibility of survival is for the passengers in second class. Therefore, it is
not true that increasing (or decreasing) the class automatically improves the chances of survival.
For this reason, I suggest one-hot encoding this feature as follows:

categorized_pclass_columns = pd.get_dummies(preprocessed_data['Pclass'],
prefix='Pclass')

preprocessed_data = pd.concat([preprocessed_data, categorized_pclass_columns],
axis=1)

preprocessed_data = preprocessed_data.drop(['Pclass'], axis=1)

Turning numerical data into categorical data (and why would we want
to do this?): Binning
In the previous section, we learned to turn categorical data into numerical data. In this section,
we see how to go in the other direction. Why would we ever want this? Let’s look at an example.

Let’s look at the Age column. It’s nice and numerical. A machine learning model answers the
following question: “How much does age determine survival in the Titanic?” Imagine that we
have a linear model for survival. Such a model would end up with one of the following two
conclusions:

•	 The older the passenger is, the more likely they are to survive.

•	 The older the passenger is, the less likely they are to survive.

However, is this always the case? What if the relationship between age and survival is not as
straightforward? What if the highest possibility of survival is when the passenger is between 20
and 30, and it’s low for all other age groups. What if the lowest possibility of survival is between
20 and 30? We need to give the model all the freedom to determine which ages determine whether
a passenger is more or less likely to survive. What can we do?

Many nonlinear models can deal with this, but we should still modify the Age column to
something that gives the model more freedom to explore the data. A useful technique we can do
is to bin the ages, namely, split them into several different buckets. For example, we can turn the
age column into the following:

•	 From 0 to 10 years old

•	 From 11 to 20 years old

•	 From 21 to 30 years old

•	 From 31 to 40 years old

•	 From 41 to 50 years old

•	 From 51 to 60 years old

•	 From 61 to 70 years old

•	 From 71 to 80 years old

•	 81 years old or older

	 Feature engineering: Transforming the features in our dataset before training the models � 399

This is similar to one-hot encoding, in the sense that it will turn the Age column into nine new
columns. The code to do this follows:

bins = [0, 10, 20, 30, 40, 50, 60, 70, 80]
categorized_age = pandas.cut(preprocessed_data['Age'], bins)
preprocessed_data['Categorized_age'] = categorized_age
preprocessed_data = preprocessed_data.drop(["Age"], axis=1)

Feature selection: Getting rid of unnecessary features
In the subsection “Dropping columns with missing data,” we dropped some columns in our
table, because they had too many missing values. However, we should also drop some other col-
umns, because they are not necessary for our model, or even worse, they may completely ruin
our model! In this section, we discuss which features should be dropped. But before that, take a
look at the features and think of which of them would be bad for our model. Here they are again:

•	 PassengerID: a unique number corresponding to every passenger

•	 Name: the full name of the passenger

•	 Sex (two categories): the gender of the passenger as male or female

•	 Age (several categories): the age of the passenger as an integer

•	 Pclass (several categories): the class in which the passenger was traveling: first, second,
or third

•	 SibSP: the number of siblings and spouse of the passenger (0 if the passenger is traveling
alone)

•	 Parch: the number of parents and children of the passenger (0 if the passenger is
traveling alone)

•	 Ticket: the ticket number

•	 Fare: the fare the passenger paid in British pounds

•	 Cabin: the cabin in which the passenger was traveling

•	 Embarked: the port in which the passenger embarked: C for Cherbourg, Q for
Queenstown, and S for Southampton

•	 Survived: information whether the passenger survived (1) or not (0)

First, let’s look at the name feature. Should we consider it in our model? Absolutely not, and here
is the reason: every passenger has a different name (perhaps with some very few exceptions,
which are not significant). Therefore, the model would be trained to simply learn the names of
the passengers who survived, and it wouldn’t be able to tell us anything about new passengers
whose names it hasn’t seen. This model is memorizing the data—it is not learning anything
meaningful about its features. This means it heavily overfits, and, therefore, we should com-
pletely get rid of the Name column.

400	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

The ticket and the PassengerID features have the same problem as the name feature, because
there is a unique one for each passenger. We’ll remove those two columns as well. The drop func-
tion will help us do this, as shown next:

preprocessed_data = preprocessed_data.drop(['Name', 'Ticket', 'PassengerId'],
axis=1)

What about the Survived feature—shouldn’t we get rid of that one, too? Definitely! Keeping the
Survived column in our dataset while training will overfit, because the model will simply use
this feature to determine whether the passenger survived. This is like cheating on a test by look-
ing at the solution. We won’t remove it yet from the dataset, because we will remove it when we
split the dataset into features and labels later for training.

As usual, we can save this dataset in the csv file preprocessed_titanic_data.csv for use in the
next section.

Training our models
Now that our data has been preprocessed, we can start training different models on the data.
What models should we choose from the ones we’ve learned in this book: decision trees, support
vector machines, logistic classifiers? The answer to this lies in evaluating our models. In this
section, we see how to train several different models, evaluate them on a validation dataset, and
pick the best model that fits our dataset.

As usual, we load our data from the file where we saved it in the previous section, as shown
next. We’ll call it data.

data = pandas.read_csv('preprocessed_titanic_data.csv')

Table 13.3 contains the first few rows of the preprocessed data. Notice that not all the columns
are displayed because there are 27 of them.

Table 13.3  The first five rows of our preprocessed data, ready to be fed into the model. Note
that it has 21 columns, many more than before. These extra columns were created when we
one-hot encoded and binned several of the existing features.

Su
rv

iv
ed

Si
bS

p

Pa
rc

h

Fa
re

Se
x_

fe
m

al
e

Se
x_

m
al

e

Pc
la

ss
_C

Pc
la

ss
_Q

Pc
la

ss
_S

Pc
la

ss
_U

...

Ca
te

go
ri

ze
d_

ag
e_

(1
0,

 2
0]

0 1 0 7.25000 0 1 0 0 1 0 ... 0
1 1 0 71.2833 1 0 1 0 0 0 ... 0
1 0 0 7.9250 1 0 0 0 1 0 ... 0
1 1 0 53.1000 1 0 0 0 1 0 ... 0
0 0 0 8.0500 0 1 0 0 1 0 ... 0

	 Training our models� 401

aside  If you run the code from the notebook, you may get different numbers.

Splitting the data into features and labels, and training and validation
Our dataset is a table with the features and labels together. We need to perform two splits. First,
we need to separate the features from the labels to feed this to the model. Next, we need to form
a training and a testing set. This is what we cover in this subsection.

To split the dataset into two tables called features and labels, we use the drop function as
follows:

features = data.drop(["Survived"], axis=1)
labels = data["Survived"]

Next, we split the data into training and validation sets. We’ll use 60% of our data for training,
20% for validation, and 20% for testing. For splitting the data, we use the Scikit-Learn function
train_test_split. In this function, we specify the percentage of data we want for validation
with the test_size parameter. The output is the four tables called features_train, fea-
tures_test, labels_train, labels_test.

If we wanted to split our data into 80% training and 20% testing, we would use the following
code:

from sklearn.model_selection import train_test_split
features_train, features_test, labels_train, labels_test =

train_test_split(features, labels, test_size=0.2)

However, because we want 60% training, 20% validation, and 20% testing, we need to use the
train_test_split function twice: once for separating the training data, and once for splitting
the validation and testing sets, as shown here:

features_train, features_validation_test, labels_train,
labels_validation_test = train_test_split(features, labels,
test_size=0.4)

features_validation, features_test, labels_validation,
labels_test = train_test_split(features_validation_test,
labels_validation_test, test_size=0.5)

aside  You may see that in the notebook we have specified a fixed random_state in this
function. The reason is that train_test_split shuffles the data when it splits it. We fix
the random state to make sure we always get the same split.

We can check the lengths of these DataFrames, and notice that the length of the training set is
534, of the validation set is 178, and of the testing set is 179. Now, recall from chapter 4 that the
Golden Rule is to never use our testing data for training or for making decisions on our models.
Therefore, we’ll save the test set for the very end, when we’ve decided what model to use. We’ll
use the training set for training the models and the validation set for taking any decisions on
what model to choose.

402	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

Training several models on our dataset
We’re finally getting to the fun part: training the models! In this section, we see how to train
several different models in Scikit-Learn in just a few lines of code.

First, we start by training a logistic regression model. We can do this by creating an instance
of LogisticRegression and using the fit method, as follows:

from sklearn.linear_model import LogisticRegression
lr_model = LogisticRegression()
lr_model.fit(features_train, labels_train)

Let’s also train a decision tree, a naive Bayes model, a support vector machine, a random forest,
a gradient boosted tree, and an AdaBoost model, as shown in the next code:

from sklearn.tree import DecisionTreeClassifier, GaussianNB, SVC,
RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier

dt_model = DecisionTreeClassifier()
dt_model.fit(features_train, labels_train)

nb_model = GaussianNB()
nb_model.fit(features_train, labels_train)

svm_model = SVC()
svm_model.fit(features_train, labels_train)

rf_model = RandomForestClassifier()
rf_model.fit(features_train, labels_train)

gb_model = GradientBoostingClassifier()
gb_model.fit(features_train, labels_train)

ab_model = AdaBoostClassifier()
ab_model.fit(features_train, labels_train)

Which model is better? Evaluating the models
Now that we’ve trained some models, we need to select the best one. In this section, we use dif-
ferent metrics to evaluate them using the validation sets. Recall that in chapter 4 we learned
accuracy, recall, precision, and F

1
-score. To refresh your memory, the definitions follow:

accuracy  The ratio between the number of correctly labeled points and the total number
of points.

recall  Among the points with positive labels, the proportion of them that are correctly
classified. In other words, Recall = TP / (TP + FN), where TP is the number of true positives
and FN the number of false negatives.

	 Training our models� 403

precision  Among the points that have been classified as positive, the proportion of them
that are correctly classified. In other words, Precision = TP / (TP + FP), where FP is the
number of false positives.

F1-score  The harmonic mean of precision and recall. This is a number between precision
and recall, but it is closer to the smaller of the two.

Testing each model’s accuracy

Let’s start by evaluating the accuracy of these models. The score function in Scikit-Learn will do
this, as shown next:

lr_model.score(features_validation, labels_validation)
Output:
0.7932960893854749

We calculate it for all the other models and get the following results, which I’ve rounded to two
figures (see the notebook for the whole procedure):

Accuracy

•	 Logistic regression: 0.77

•	 Decision tree: 0.78

•	 Naive Bayes: 0.72

•	 SVM: 0.68

•	 Random forest: 0.7875

•	 Gradient boosting: 0.81

•	 AdaBoost: 0.76

This hints that the best model in this dataset is a gradient boosted tree, because it gives us the
highest accuracy on the validation set (81%, which is good for the Titanic dataset). This is not
surprising, because this algorithm normally performs very well.

You can follow a similar procedure to calculate the recall, precision, and F
1
 score. I will let you

do it for recall and precision, and we will do it together for F
1
 score.

Testing each model’s F1-score

Here is how we check the F
1
 score. First, we have to output the predictions of the model, using the

predict function, and then we use the f1_score function, as follows:

Uses the model to

make the predictions

lr_predicted_labels = lr_model.predict(features_validation)
f1_score(labels_validation, lr_predicted_labels)

Calculates the
F1 score

Output:
0.6870229007633588

404	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

As before, we can do this for all the models, and get the following:

F
1
-Score

•	 Logistic regression: 0.69

•	 Decision tree: 0.71

•	 Naive Bayes: 0.63

•	 Support vector machine: 0.42

•	 Random forest: 0.68

•	 Gradient boosting: 0.74

•	 AdaBoost: 0.69

Again, the gradient boosted tree won with an F
1
-score of 0.74. Given the fact that its numbers

were much higher than the other models, we can safely conclude that among these eight models,
gradient boosted trees is the best one. Notice that the tree-based models did well in general,
which is not surprising, given the high nonlinearity of the dataset. It would be interesting to train
a neural network and an XGBoost model on this dataset, too, and I encourage you to do so!

Testing the model
After comparing the models using the validation set, we have finally made up our minds, and we
have chosen the gradient boosted tree as the best model for this dataset. Don’t be surprised; gra-
dient boosted trees (and their close cousin, XGBoost) win most competitions. But to see if we
really did well or if we accidentally overfit, we need to give this model its final test: we need to test
the model in the test set that we haven’t touched yet.

First, let’s evaluate the accuracy, as follows:

gb_model.score(features_test, labels_test)
Output:
0.8324022346368715

And now let’s look at the F
1
-score, shown next:

gb_predicted_test_labels = gb_model.predict(features_test)
f1_score(labels_test, gb_predicted_test_labels)
Output:
0.8026315789473685

These scores are quite good for the Titanic dataset. Thus, we can comfortably say that our model
is good.

However, we trained these models without touching their hyperparameters, which means that
Scikit-Learn picked some standard hyperparameters for them. Is there a way we can find the best
hyperparameters for a model? In the next section, we learn that there is.

	 Tuning the hyperparameters to find the best model: Grid search� 405

Tuning the hyperparameters to find the best model:
Grid search
In the previous section, we trained several models and found that the gradient boosting tree per-
formed best among them. However, we didn’t explore many different combinations of hyperpa-
rameters, so we have room to improve in our training. In this section, we see a useful technique to
search among many combinations of hyperparameters to find a good model for our data.

The performance of the gradient boosted tree was about as high as one can obtain for the
Titanic dataset, so let’s leave that one alone. The poor SVM, however, performed last, with an
accuracy of 69% and an F

1
-score of 0.42. We believe in SVMs, however, because they are a pow-

erful machine learning model. Perhaps the bad performance of this SVM is due to the hyperpa-
rameters it is using. There may be a better combination of them that works.

aside  Throughout this section, we make some choices of parameters. Some are based on
experience, some on standard practices, and some are arbitrary. I encourage you to try fol-
lowing a similar procedure with any choices you decide to make and to try to beat the
current scores of the models!

To improve the performance of our SVM, we use a method called grid search, which consists of
training our model several times over different combinations of the hyperparameters and select-
ing the one that performs best on our validation set.

Let’s begin by picking a kernel. In practice, I have found that the RBF (radial basis functions)
kernel tends to perform well, so let’s select that one. Recall from chapter 9 that the hyperparam-
eter that goes with the RBF kernel is gamma, which is a real number. Let’s try to train an SVM
with two values for gamma, namely, 1 and 10. Why 1 and 10? Normally when we search for
hyperparameters, we tend to do an exponential search, so we would try values such as 0.1, 1, 10,
100, 1000, and so on, as opposed to 1, 2, 3, 4, 5. This exponential search covers a larger space and
gives us better chances of finding good hyperparameters, and doing this type of search is stan-
dard practice among data scientists.

Recall again from chapter 9 that another hyperparameter associated to SVMs is the C param-
eter. Let’s also try to train models with C = 1 and C = 10. This gives us the following four possible
models to train:

Model 1: kernel = RBF, gamma = 1, C = 1

Model 2: kernel = RBF, gamma = 1, C = 10

Model 3: kernel = RBF, gamma = 10, C = 1

Model 4: kernel = RBF, gamma = 10, C = 10

We can easily train all of those in our training set with the following eight lines of code:

svm_1_1 = SVC(kernel='rbf', C=1, gamma=1)
svm_1_1.fit(features_train, labels_train)

406	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

svm_1_10 = SVC(kernel='rbf', C=1, gamma=10)
svm_1_10.fit(features_train, labels_train)

svm_10_1 = SVC(kernel='rbf', C=10, gamma=1)
svm_10_1.fit(features_train, labels_train)

svm_10_10 = SVC(kernel='rbf', C=10, gamma=10)
svm_10_10.fit(features_train, labels_train)

Now we evaluate them, using accuracy (another arbitrary choice—we could also use F
1
-score,

precision, or recall). The scores are recorded in table 13.4.

Table 13.4  The grid search method is useful to search over many combinations of
hyperparameters and pick the best model. Here we use a grid search to pick the best
combination of parameters C and gamma in an SVM. We used accuracy to compare the
models in the validation set. Notice that the best model among these is the one with gamma =
0.1 and C = 10, with an accuracy of 0.72.

C = 1 C = 10

gamma = 0.1 0.69 0.72

gamma = 1 0.70 0.70

gamma = 10 0.67 0.65

Notice from table 13.4 that the best accuracy is 0.72, given by the model with gamma = 0.1 and
C = 1. This is an improvement from the 0.68 we obtained previously when we didn’t specify any
hyperparameters.

If we had many more parameters, we simply make a grid with them and train all the possible
models. Notice that as we explore more choices, the number of models rapidly increases. For
example, if we wanted to explore five values for gamma and four values for C, we would have to
train 20 models (five times four). We can also add more hyperparameters—for example, if there
was a third hyperparameter that we wanted to try, and there were seven values for this one, we
would have to train a total of 140 models (five times four times seven). As the number of models
grows so quickly, it is important to pick the choices in such a way that it explores the hyperpa-
rameter space well, without training a huge number of models.

Scikit-Learn offers a simple way to do this: using the GridSearchCV object. First, we define the
hyperparameters as a dictionary, where the key of the dictionary is the name of the parameter
and the value corresponding to this key is the list of values we want to try for our hyperparame-
ter. In this case, let’s explore the following combinations of hyperparameters:

Kernel: RBF

C: 0.01, 0.1, 1, 10, 100

gamma: 0.01, 0.1, 1, 10, 100

	 Tuning the hyperparameters to find the best model: Grid search� 407

The following code will do it:

svm_parameters = {'kernel': ['rbf'],
 'C': [0.01, 0.1, 1 , 10, 100],
 'gamma': [0.01, 0.1, 1, 10, 100]
 }

A dictionary with the
hyperparameters and the

values we want to try

svm = SVC() A regular SVM with
no hyperparameters

svm_gs = GridSearchCV(estimator = svm,
 param_grid = svm_parameters) A GridSearchCV

object where we
pass the SVM and
the hyperparameter
dictionary

svm_gs.fit(features_train, labels_train)

 We fit the GridSearchCV model in
the same way that we fit a regular

model in Scikit-Learn.

This trains 25 models with all the combinations of hyperparameters given in the hyperparame-
ter dictionary. Now, we pick the best of these models and call it svm_winner. Let’s calculate the
accuracy of this model on the validation set as follows:

svm_winner = svm_gs.best_estimator_
svm_winner.score(features_validation, labels_validation)
Output:
0.7303370786516854

Our winning model achieved an accuracy of 0.73, which is better than the original 0.68. We
could still improve this model by running a larger hyperparameter search, and I encourage you
to try it yourself. For now, let’s explore which hyperparameters were used by the last winning
SVM model, as shown here:

svm_winner
Output:
SVC(C=10, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma=0.01, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)

The winning model used an RBF kernel with gamma = 0.01 and C = 10.

challenge  I encourage you to try using grid search on other models, and see how much
you can improve the accuracy and F

1
-score of the winning model! If you have a good score,

run it on the Kaggle dataset and submit your predictions using this link: https://www
.kaggle.com/c/titanic/submit.

One more thing: what is that CV at the end of GridSearchCV? It stands for cross-validation, which
we learn in the next section.

https://www.kaggle.com/c/titanic/submit
https://www.kaggle.com/c/titanic/submit

408	 Chapter 13 I Putting it all in practice: A real-life example of data engineering and machine learning

Using K-fold cross-validation to reuse our data
as training and validation
In this section, we learn an alternative to the traditional training-validation-testing method
we’ve been using in this chapter. It is called k-fold cross validation, and it is useful in many situa-
tions, especially when our dataset is small.

Throughout this example, we used 60% of our data for training, 20% for validation, and a
final 20% for testing. That works in practice, but it seems that we are losing some data, right? We
end up training the model with only 60% of our data, which may hurt our model, especially
when the dataset is small. K-fold cross-validation is a way to use all the data for training and
testing, by recycling it several times. It works as follows:

1.	 Split the data into k equal (or almost equal) portions.

2.	 Train the model k times, using the union of k – 1 of the portions as the training set and
the remaining one as a validation set.

3.	 The final score of that model is the average of the validation scores from the k steps.

Figure 13.2 shows a picture of fourfold cross-validation.

ValidateTrain

Validation

Fourfold cross-validation

score_1

score_2

score_3

score_4

score = score_1 + score_2 + score_3 + score_4

4

score

Train Train Train

Train Train

Train

Train

Train

Train

Train

Train

Train

Validate

Validate

Validate

Validate

Figure 13.2  K-fold cross validation is a useful method that recycles our data to use it both as training and as
validation. On the top, we see the classical training-validation split. On the bottom, we see an illustration of
fourfold cross-validation in which we split the data into four equal (or almost equal) portions. We then train
our model four times. Each time we pick three of the portions as the training set, and the remaining one as the
validation set. The score of this model is the average of the four scores obtained on each of the validation sets.

Exercises� 409

This method is what is used in GridSearchCV, and the results of this process can be examined by
typing svm_gs.cv_results_. We won’t show the results here, because they are very long, but you
can take a look at them in the notebook.

Summary
• Pandas is a useful Python package to open, manipulate, and save datasets.

• Cleaning up our data is necessary, because it may come with problems such as missing values.

• Features can be numerical or categorical. Numerical features are numbers, such as age.
Categorical features are categories, or types, such as dog/cat/bird.

• Machine learning models take only numbers, so to feed categorical data to a machine learning
model, we must turn it into numerical data. One way to do this is by one-hot encoding.

• In some situations, we may want to treat our numerical features as categorical features as
well, which we can do by binning the data.

• It is important to use feature selection to remove unnecessary features in our data.

• Scikit-Learn is a useful package to train, test, and evaluate machine learning models.

• Before training the model, we must split the data into training, validation, and testing.
We have Pandas functions for doing this.

• Grid search is a method used to find the best hyperparameters for a model. It consists of
training several models over a (sometimes large) set of hyperparameters.

• K-fold cross-validation is a method used to recycle the data and use it as training and
validation as well. It consists of training and testing several models on different portions
of the data.

Exercises
Exercise 13.1

The repository contains a file called test.csv. This is a file with more passengers on the Titanic,
except it doesn’t have the Survived column.

1. Preprocess the data in this file as we did in this chapter.

2. Use any of the models to predict labels in this dataset. According to your model, how
many passengers survived?

3. Comparing the performance of all the models in this chapter, how many passengers from
the test set would you think actually survived?

411

Appendix
Solutions to the exercises A

Chapter 2: Types of machine learning
For the questions in this chapter, your answers don’t need to match mine. If you have different ideas
for models used in these applications, they might be great! I encourage you to look them up in the
literature, and if they don’t exist, try to implement them.

Exercise 2.1
For each of the following scenarios, state if it is an example of supervised or unsupervised learning.
Explain your answers. In cases of ambiguity, pick one and explain why you picked it.

a.	 A recommendation system on a social network that recommends potential friends to a user

b.	 A system in a news site that divides the news into topics

c.	 The Google autocomplete feature for sentences

d.	 A recommendation system on an online retailer that recommends to users what to buy based
on their past purchasing history

e.	 A system in a credit card company that captures fraudulent transactions

Solution

Depending on how you interpreted the problem and the dataset, each of these can be considered an
example of supervised or unsupervised learning. It is completely OK (and encouraged!) to have dif-
ferent answers, as long as the reasoning behind them is correct.

a.	 This is an example of both supervised and unsupervised learning. Supervised learning:
for a particular user, we can build a classification model where the label of every other
user is positive if they are a potential friend and negative if they are not a potential friend.
Unsupervised learning: we can cluster the users, where similar users share similar

412	 Appendix A I Solutions to the exercises

demographic or behavioral features. To a particular user, we can recommend other users
in their cluster as potential friends.

b.	 This is also an example of both supervised and unsupervised learning. Supervised
learning: a classification model where the label of each news article is the topic, for
example, politics, sports, or science. Unsupervised learning: we can cluster the articles
and then manually check if the topics in each cluster are similar. If this is the case, then
we can manually label each cluster by the most common topic. There are some more
advanced unsupervised learning techniques such as latent Dirichlet allocation, which you
can learn in this video: https://www.youtube.com/watch?v=T05t-SqKArY.

c.	 This one is more of a supervised learning task. We can build a classification model in
which the features are the last few words the user has typed, and the label is the next
word they’ll type. In that way, the prediction of the model is the word we’ll suggest to
the user.

d.	 This is similar to a), and it can be considered a supervised or an unsupervised learning
problem. Supervised learning: for a particular user, we can build a classification model
for all the products, where for each product, we predict whether the user will buy it. We
can also build a regression model in which we predict how much money the user will
spend on that particular product. Unsupervised learning: we can cluster the users. If a
user has bought a product, we can recommend that same product to other users in the
cluster. We can also cluster the products, and if a user has bought a product, we
recommend products in the same cluster.

e.	 This one is more of a supervised learning task. We can build a classification model that
predicts whether a certain transaction is fraudulent or not, based on the characteristics of
that transaction. It can also be seen as an unsupervised learning task in which we cluster
the transactions, and those left as outliers have a higher chance of being fraudulent.

Exercise 2.2
For each of the following applications of machine learning, would you use regression or classifi-
cation to solve it? Explain your answers. In cases of ambiguity, pick one and explain why you
picked it.

a.	 An online store predicting how much money a user will spend on their site

b.	 A voice assistant decoding voice and turning it into text

c.	 Selling or buying stock from a particular company

d.	 YouTube recommending a video to a user

Solution

a.	 Regression, because we are trying to predict the amount of money that the user spends,
and this is a numerical feature.

https://www.youtube.com/watch?v=T05t-SqKArY

	 Chapter 3: Drawing a line close to our points: Linear regression� 413

b.	 Classification, because we are trying to predict whether the sentence the user has spoken
is directed to Alexa, and this is a categorical feature.

c.	 This could be regression or classification. If we are trying to predict the expected gain or
the expected risk to help us in our decision, it is regression. If we are trying to predict
whether we should buy the stock, it is classification.

d.	 This can again be regression or classification. If we are trying to predict how much time
the user will spend watching the video in order to recommend it, it is regression. If we are
trying to predict whether the user will watch a video, it is classification.

Exercise 2.3
Your task is to build a self-driving car. Give at least three examples of machine learning problems
that you would have to solve to build it. In each example, explain whether you are using super-
vised/unsupervised learning, and if supervised, whether you are using regression or classifica-
tion. If you are using other types of machine learning, explain which ones and why.

Solution

•	 A classification model, which, based on the image, determines whether there are
pedestrians, stop signs, lanes, other cars, and so on. This is a large area of machine
learning called computer vision, which I highly encourage you to explore further!

•	 A similar classification model as the previous one, which determines what objects are
around the car based on the signals from all the different sensors in the car (lidar, etc.)

•	 A machine learning model that finds the closest path to our desired destination. This is
not precisely supervised or unsupervised learning. There are some more classical
artificial intelligence algorithms such as A* (A-star) search that can be used here.

Chapter 3: Drawing a line close to our points:
Linear regression
Exercise 3.1
A website has trained a linear regression model to predict the amount of minutes that a user will
spend on the site. The formula they have obtained is

t̂ = 0.8d + 0.5m + 0.5y + 0.2a + 1.5

where t̂ is the predicted time in minutes, and d, m, y, and a are indicator variables (namely, they
take only the values 0 or 1) defined as follows:

•	 d is a variable that indicates if the user is on desktop.

•	 m is a variable that indicates if the user is on mobile device.

414	 Appendix A I Solutions to the exercises

•	 y is a variable that indicates if the user is young (under 21 years old).

•	 a is a variable that indicates if the user is an adult (21 years old or older).

Example: If a user is 30 years old and on desktop, then d = 1, m = 0, y = 0, and a = 1.
If a 45-year-old user looks at the website from their phone, what is the expected time they will

spend on the site?

Solution

In this case, the values of the variables are the following:

•	 d = 0 because the user is not on desktop.

•	 m = 1 because the user is on mobile.

•	 y = 0 because the user is not under 21.

•	 a = 1 because the user is over 21.

When we plug them into the formula, we get

t̂ = 0.8 · 0 + 0.5 · 1 + 0.5 · 0 + 0.2 · 1 + 1.5 = 2.2.

This means the model predicts that this user will spend 2.2 minutes on the website.

Exercise 3.2
Imagine that we trained a linear regression model in a medical dataset. The model predicts the
expected lifetime of a patient. To each of the features in our dataset, the model would assign a
weight.

a) For the following quantities, state if you believe the weight attached to this quantity is a posi-
tive number, a negative number, or zero. Note: if you believe that the weight is a very small num-
ber, whether positive or negative, you can say zero.

1.	 Number of hours of exercise the patient gets per week

2.	 Number of cigarettes the patient smokes per week

3.	 Number of family members with heart problems

4.	 Number of siblings of the patient

5.	 Whether or not the patient has been hospitalized

b) The model also has a bias. Do you think the bias is positive, negative, or zero?

Solution

a) We’ll make some generalizations based on general medical knowledge. For a particular patient,
the following are not necessarily true, but we’ll make the assumption that they are true for the
general population:

	 Chapter 3: Drawing a line close to our points: Linear regression � 415

1.	 A patient who exercises a lot is expected to live longer than a similar patient who doesn’t.
Thus, this weight should be a positive number.

2.	 A patient who smokes many cigarettes a week is expected to live shorter than a similar
patient who doesn’t. Thus, this weight should be a negative number.

3.	 A patient who has many family members with heart problems has a higher likelihood of
having heart problems, and thus they are expected to live shorter than a similar patient
that doesn’t have them. Thus, this weight should be a negative number.

4.	 The number of siblings tends to be independent of the expected lifetime, so we expect this
weight to be a very small number, or zero.

5.	 A patient who has been hospitalized in the past is likely to have had previous health
problems. Thus, their expected lifetime is shorter than a similar patient that hasn’t been
hospitalized before. Therefore, this weight should be a negative number. Of course, the
hospitalization could be for a reason that doesn’t affect expected lifetime (such as a
broken leg), but on average, we can say that if a patient has been to the hospital in the
past, they have a higher probability to have health problems.

b) The bias is the prediction for a patient for which every feature is zero (i.e., a patient who doesn’t
smoke, doesn’t exercise, has zero family members with heart condition, zero siblings, and has
never been hospitalized). Because this patient is expected to live a positive number of years, the
bias of this model must be a positive number.

Exercise 3.3
The following is a dataset of houses with sizes (in square feet) and prices (in dollars).

Size (s) Prize (p)

House 1 100 200

House 2 200 475

House 3 200 400

House 4 250 520

House 5 325 735

Suppose we have trained the model where the prediction for the price of the house based on size
is the following:

p̂ = 2s + 50

a.	 Calculate the predictions that this model makes on the dataset.

b.	 Calculate the mean absolute error of this model.

c.	 Calculate the root mean square error of this model.

416	 Appendix A I Solutions to the exercises

Solution

a.	 The predicted prices based on the model follow:

	– House 1: p̂ = 2 · 100 + 50 = 250

	– House 2: p̂ = 2 · 200 + 50 = 450

	– House 3: p̂ = 2 · 200 + 50 = 450

	– House 4: p̂ = 2 · 250 + 50 = 550

	– House 5: p̂ = 2 · 325 + 50 = 700

b.	 The mean absolute error is

1

5
(|200 – 250| + |475 – 450| + |400 – 450| + |520 – 550| + |735 – 700|)

=
1

5
(50 + 25 + 50 + 30 + 35) = 38.

c.	 The mean square error is

1

5
((200 – 250)2 + (475 – 450)2 + (400 – 450)2 + (520 – 550)2 + (735 – 700)2)

=
1

5
(2500 + 625 + 2500 + 900 + 1225) = 1550.

Therefore, the root mean square error is 1550 = 39.37.

Exercise 3.4
Our goal is to move the line with equation ŷ = 2x + 3 closer to the point (x, y) = (5, 15) using the
tricks we’ve learned in this chapter. For the following two problems, use the learning rate h = 0.01.

a.	 Apply the absolute trick to modify the line above to be closer to the point.

b.	 Apply the square trick to modify the line above to be closer to the point.

Solution

The prediction that this model makes at the point is ŷ = 2 · 5 + 3 = 13.

a.	 Because the prediction is 13, which is smaller than the label 15, the point is
underneath the line.

In this model, the slope is m = 2 and the y-intercept is b = 3. The absolute trick involves
adding xh = 5 · 0.01 = 0.05 to the slope, and h = 0.01 to the y-intercept, thus obtaining
the model with equation

ŷ = 2.05x + 3.01.

	 Chapter 4: Optimizing the training process: Underfitting, overfitting, testing, and regularization� 417

b.	 The square trick involves adding (y – ŷ)xh = (15 – 13) · 5 · 0.01 = 0.1 to the slope, and (y – ŷ)h
= (15 – 13) · 0.01 = 0.02 to the y-intercept, thus obtaining the model with equation

ŷ = 2.1x + 3.02.

Chapter 4: Optimizing the training process:
Underfitting, overfitting, testing, and regularization
Exercise 4.1
We have trained four models in the same dataset with different hyperparameters. In the follow-
ing table we have recorded the training and testing errors for each of the models.

Model Training error Testing error

1 0.1 1.8

2 0.4 1.2

3 0.6 0.8

4 1.9 2.3

a.	 Which model would you select for this dataset?

b.	 Which model looks like it’s underfitting the data?

c.	 Which model looks like it’s overfitting the data?

Solution

a.	 The best model is the one with the smallest testing error, which is model 3.

b.	 Model 4 looks like it is underfitting because it has large training and testing errors.

c.	 Models 1 and 2 look like they are overfitting, because they have small training errors but
large testing errors.

Exercise 4.2
We are given the following dataset:

x y

1 2

2 2.5

3 6

4 14.5

5 34

418	 Appendix A I Solutions to the exercises

We train the polynomial regression model that predicts the value of y as ŷ, where

ŷ = 2x2 – 5x + 4.

If the regularization parameter is l = 0.1 and the error function we’ve used to train this dataset
is the mean absolute value (MAE), determine the following:

a.	 The lasso regression error of our model (using the L1-norm)

b.	 The ridge regression error of our model (using the L2-norm)

Solution

First we need to find the predictions to calculate the mean absolute error of the model. In the
following table, we can find the prediction calculated by the formula ŷ = 2x2 – 5x + 4, and the
absolute value of the difference between the prediction and the label |y – ŷ|.

x y ŷ |y – ŷ |

1 2 1 1

2 2.5 2 0.5

3 6 7 1

4 14.5 16 1.5

5 34 29 5

Thus, the mean absolute error is the average of the numbers in the fourth row, namely

1

5
(1 + 0.5 + 1 + 1.5 + 5) = 1.8.

a.	 First we need to find the L1-norm of the polynomial. This is the sum of the absolute values
of the nonconstant coefficients, namely, |2| + |–5| = 7. To find the L1-regularization cost of
the model, we add the mean absolute error and the L1-norm times the regularization
parameter, to obtain 1.8 + 0.1 · 7 = 2.5.

b.	 In a similar way, we find the L1-norm of the polynomial by adding the squares of
nonconstant coefficients to get 22 + (–5)2 = 29. As before, the L2-regularization cost of
the model is 1.8 + 0.1 · 29 = 4.7.

	 Chapter 5: Using lines to split our points: The perceptron algorithm� 419

Chapter 5: Using lines to split our points:
The perceptron algorithm
Exercise 5.1
The following is a dataset of patients who have tested positive or negative for COVID-19. Their
symptoms are cough (C), fever (F), difficulty breathing (B), and tiredness (T).

Cough (C) Fever (F) Difficulty
breathing (B)

Tiredness (T) Diagnosis (D)

Patient 1 X X X Sick

Patient 2 X X X Sick

Patient 3 X X X Sick

Patient 4 X X X Sick

Patient 5 X X Healthy

Patient 6 X X Healthy

Patient 7 X Healthy

Patient 8 X Healthy

Build a perceptron model that classifies this dataset.

hint  You can use the perceptron algorithm, but you may be able to eyeball a good percep-
tron model that works.

Solution

If we count how many symptoms each patient has, we notice that the sick patients show three or
more symptoms, whereas the healthy patients show two or fewer symptoms. Thus, the following
model works to predict the diagnosis D:

D̂ = step(C + F + B + T – 2.5)

Exercise 5.2
Consider the perceptron model that assigns to the point (x

1
, x

2
) the prediction ŷ = step(2x

1
 + 3x

2
 – 4).

This model has as a boundary line with equation 2x
1
 + 3x

2
 – 4 = 0. We have the point p = (1, 1)

with label 0.

a.	 Verify that the point p is misclassified by the model.

b.	 Calculate the perceptron error that the model produces at the point p.

c.	 Use the perceptron trick to obtain a new model that still misclassifies p but that produces
a smaller error. You can use h = 0.01 as the learning rate.

420	 Appendix A I Solutions to the exercises

d.	 Find the prediction given by the new model at the point p, and verify that the perceptron
error obtained is smaller than the original.

Solution

a.	 The prediction for the point p is

ŷ = step(2x
1
 + 3x

2
 – 4) = step(2 · 1 + 3 · 1 – 4) = step(1) = 1.

Because the label of the point is 0, the point is misclassified.

b.	 The perceptron error is the absolute value of the score. The score is 2x
1
 + 3x

2
 – 4 = 2 · 1 +

3 · 1 – 4 = 1, so the perceptron error is 1.

c.	 The weights of the model are 2, 3, and –4, and the coordinates of the point are (1, 1). The
perceptron trick does the following:

	– Replaces 2 with 2 – 0.01 · 1 = 1.99

	– Replaces 3 with 3 – 0.01 · 1 = 2.99

	– Replaces –4 with –1 – 0.01 · 1 = –4.01

Thus, the new model is the one that makes the prediction ŷ = step(1.99x
1
 + 2.99x

2
 – 4.01).

d.	 Note that at our point, the new prediction is ŷ = step(1.99x
1
 + 2.99x

2
 – 4.01) = step(0.97) =

0, which means the model still misclassifies the point. However, the new perceptron error
is |1.99 · 1 + 2.99 · 1 – 4.01| = 0.97, which is smaller than 1, the previous error.

Exercise 5.3
Perceptrons are particularly useful for building logical gates such as AND and OR.

a.	 Build a perceptron that models the AND gate. In other words, build a perceptron to fit
the following dataset (where x

1
, x

2
 are the features and y is the label):

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

b.	 Similarly, build a perceptron that models the OR gate, given by the following dataset:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

	 Chapter 5: Using lines to split our points: The perceptron algorithm � 421

c.	 Show that there is no perceptron that models the XOR gate, given by the following
dataset:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

Solution

For simplicity, we plot the data points in the figure that follows.

(1,0)

(0,0)
(0,1)

(1,1) (1,0)

(0,0)
(0,1)

(1,1) (1,0)

(0,0)
(0,1)

(1,1)

AND OR XOR

1
0

Note that a perceptron classifier is precisely a line that would split the black and white dots in the
above plots.

For the AND and OR datasets, we can easily split the black and white points with a line, as
seen next.

(1,0)

(0,0)
(0,1)

(1,1) (1,0)

(0,0)
(0,1)

(1,1)

AND OR

a.	 Many equations work for the line separating the AND dataset. We’ll pick the line with
equation x

1
 + x

2
 – 1.5. Thus, the perceptron that classifies this dataset makes the

prediction ŷ = step(x
1
 + x

2
 – 1.5).

422	 Appendix A I Solutions to the exercises

b.	 Similarly, many equations work for the OR dataset, and we pick the line with equation
x

1
 + x

2
 – 0.5. The equation for the prediction is ŷ = step(x

1
 + x

2
 – 0.5).

c.	 Notice that the dataset for XOR is impossible to separate using a single line. Thus, there is
no perceptron model that perfectly fits the XOR dataset. However, a combination of
perceptrons can separate this dataset. These are also called multilayer perceptrons, or
neural networks, and we’ll see them in chapter 10. If you’re curious, take a look at
exercise 10.2.

Chapter 6: A continuous approach to splitting points:
Logistic classifiers
Exercise 6.1
A dentist has trained a logistic classifier on a dataset of patients to predict if they have a decayed
tooth. The model has determined that the probability that a patient has a decayed tooth is

s(d + 0.5c – 0.8),

where

•	 d is a variable that indicates whether the patient has had another decayed tooth in the
past, and

•	 c is a variable that indicates whether the patient eats candy.

For example, if a patient eats candy, then c = 1, and if they don’t, then c = 0. What is the proba-
bility that a patient that eats candy and was treated for a decayed tooth last year has a decayed
tooth today?

Solution

If the patient eats candy, then c = 1. If the patient was treated for tooth decay last year, then d =
1. Thus, according to the model, the probability that the patient has a decayed tooth is

s(1 + 0.5 · 1 – 0.8) = s(0.7) = 0.668.

Exercise 6.2
Consider the logistic classifier that assigns to the point (x

1
, x

2
) the prediction ŷ = s(2x

1
 + 3x

2
 – 4),

and the point p = (1, 1) with label 0.

a.	 Calculate the prediction ŷ that the model gives to the point p.

b.	 Calculate the log loss that the model produces at the point p.

	 Chapter 6: A continuous approach to splitting points: Logistic classifiers� 423

c.	 Use the logistic trick to obtain a new model that produces a smaller log loss. You can use
h = 0.1 as the learning rate.

d.	 Find the prediction given by the new model at the point p, and verify that the log loss
obtained is smaller than the original.

Solution

a.	 The prediction is ŷ = s(2 · 1 + 3 · 1 – 4) = s(1) = 0.731

b.	 The log loss is

log loss = –y ln (ŷ) – (1 – y) ln (1 – ŷ)

= –0 ln (0.731) – (1 – 0) ln (1 – 0.731)

= 1.313.

c.	 Recall that the perceptron trick for the logistic regression model with prediction ŷ = s(w
1

x
1
 + w

1
x

1
 + b) gives us the following new weights:

	– w
i
' = w

i
+ h(y – ŷ) x

i
 for i = 1,2

	– b' = b + h(y – ŷ) for i = 1,2

These are the values to plug into the previous formulas:

	– y = 0

	– ŷ = 0.731

	– w
1
= 2

	– w
2
= 3

	– b = –4

	– h = 0.1

	– x
1
= 1

	– x
2
= 1

We obtain the following new weights for our classifier:

	– w
1
' = 2 + 0.1 · (0 – 0.731) · 1 = 1.9269

	– w
2
' = 3 + 0.1 · (0 – 0.731) · 1 = 2.9269

	– b = –4 + 0.1 · (0 – 0.731) = –4.0731

Thus, our new classifier is the one that makes the prediction ŷ = s(1.9269x
1
 + 2.9269x

2

– 4.0731).

424	 Appendix A I Solutions to the exercises

The prediction at the point p is ŷ =s(1.9269 · 1 + 2.9269 · 1 – 4.0731) = 0.686. Notice that
because the label is 0, the prediction has improved from the original 0.731, to the actual
0.686.

d.	 The log loss for this prediction is –y ln(ŷ) – (1 – y) ln (1 – ŷ) = –0 ln (0.686) – (1 – 0)
ln (1 – 0.686) = 1.158. Note that this is smaller than the original log loss of 1.313.

Exercise 6.3
Using the first model in exercise 6.2, construct a point for which the prediction is 0.8.

hint  First find the score that will give a prediction of 0.8, and recall that the prediction is
ŷ = s(score).

Solution

First, we need to find a score such that s(score) = 0.8. This is equivalent to

 0.8
1

score

score

e

e
=

+

e
score = 0.8(1 + e

score)

e
score = 0.8 + 0.8 · e

score

0.2e
score = 0.8

e
score = 4

score = ln (4) = 1.386.

Recall that for the point (x
1
, x

2
), the score is 2x

1
 + 3x

2
 – 4. Many points (x

1
, x

2
) satisfy that the score

is 1.386, but in particular, let’s pick one in which x
2
 = 0 for convenience. We need to solve the

equation 2x
1
 + 3 · 0 – 4 = 1.386, which has as a solution, x

1
 = 2.693. Thus, a point that gives a

prediction of 0.8 is the point (2.693, 0).

Chapter 7: How do you measure classification
models? Accuracy and its friends
Exercise 7.1
A video site has established that a particular user likes animal videos and absolutely nothing else.
In the next figure, we can see the recommendations that this user got when logging in to the site.

	 Chapter 7: How do you measure classification models? Accuracy and its friends� 425

Recommended Not recommended

If this is all the data we have on the model, answer the following questions:

a.	 What is the accuracy of the model?

b.	 What is the recall of the model?

c.	 What is the precision of the model?

d.	 What is the F
1
-score of the model?

e.	 Would you say that this is a good recommendation model?

Solution

First, let’s write the confusion matrix. In this case, we label the videos that are about animals as
positive, and the videos that are recommended as predicted positive.

•	 There are four recommended videos. Out of them, three are about animals, which means
they are good recommendations. The other one is not about animals, so it is a false positive.

•	 There are six videos that are not recommended. Out of them, two are about animals,
which should have been recommended. Thus, they are false negatives. The other four are
not about animals, so it was correct not to recommend them.

Thus, the confusion matrix is the following:

Predicted positive
(recommended)

Predicted negative
(not recommended)

Positive (about animals) 3 2

Negative (not about animals) 1 4

426	 Appendix A I Solutions to the exercises

Now we can calculate the metrics.

a.	 Accuracy =
7

10
 = 0.7

b.	 Recall =
3

5
 = 0.6

c.	 Precision =
3

4
 = 0.75

d.	 F
1
-score =

3 3
2

24 5

3 3 3
4 5

   
      

=
+

 = 0.67

e.	 This is a subjective answer. A medical model with these metrics may not be good enough.
However, if a recommendation model has decent accuracy, precision, and recall, it is
considered a good model, because making a couple of mistakes in a recommendation
model is not as crucial.

Exercise 7.2
Find the sensitivity and specificity of the medical model with the following confusion matrix:

Predicted sick Predicted healthy

Sick 120 22

Healthy 63 795

Solution

The sensitivity is the number of correctly predicted sick people divided by the total number of

sick people. This is
120

142

 = 0.845.

The specificity is the number of correctly predicted healthy people divided by the total num-

ber of healthy people. This is
795

858
 = 0.927.

Exercise 7.3
For the following models, determine which error is worse, a false positive or a false negative.
Based on that, determine which of the two metrics, precision or recall, we should emphasize
when evaluating each of the models.

	 Chapter 7: How do you measure classification models? Accuracy and its friends� 427

1.	 A movie recommendation system that predicts whether a user will watch a movie.

2.	 An image-detection model used in self-driving cars that detects whether an image
contains a pedestrian.

3.	 A voice assistant at home that predicts whether the user gave it an order.

Solution

note  In all of the following models, a false negative and a false positive are bad, and we
want to avoid both of them. However, we show an argument for which one of the two is
worse. These are all conceptual questions, so if you have a different idea, as long as you can
argue it well, it is valid! These are the kind of discussions that arise in a team of data scientists,
and it is important to have healthy opinions and arguments supporting each point of view.

1.	 In this model, we label the movies that the user wants to watch as positives. A false
positive occurs any time we recommend a movie that the user doesn’t want to watch. A
false negative occurs any time there is a movie that the user wants to watch, but we don’t
recommend it. Which is worse, a false negative or a false positive? Because the homepage
shows many recommendations and the user ignores most of them, this model has many
false negatives that don’t affect the user experience much. However, if there is a great
movie that the user would like to watch, it is crucial to recommend it to them. Therefore,
in this model, a false negative is worse than a false positive, so we should evaluate this
model using recall.

2.	 In this model, we label the existence of a pedestrian as a positive. A false positive occurs
when there is no pedestrian, but the car thinks there is a pedestrian. A false negative
occurs when the car doesn’t detect a pedestrian that is in front of the car. In the case of a
false negative, the car may hit a pedestrian. In the case of a false positive, the car may
brake unnecessarily, which may or may not lead to an accident. Although both are
serious, it is much worse to hit a pedestrian. Therefore, in this model, a false negative is
worse than a false positive, so we should evaluate this model using recall.

3.	 In this model, we label a voice command as a positive. A false positive occurs when the
user is not talking to the voice assistant, but the voice assistant responds. A false negative
occurs when the user is talking to the voice assistant, but the voice assistant doesn’t
respond. As a personal choice, I prefer to have to repeat to my voice assistant than to have
her speak to me out of the blue. Thus, in this model, a false positive is worse than a false
negative, so we should evaluate this model using precision.

Exercise 7.4
We are given the following models:

1.	 A self-driving car model for detecting a pedestrian based on the image from the car’s camera

2.	 A medical model for diagnosing a deadly illness based on the patient’s symptoms

428	 Appendix A I Solutions to the exercises

3.	 A recommendation system for movies based on the user’s previous movies watched

4.	 A voice assistant that determines whether the user needs assistance given the voice
command

5.	 A spam-detection model that determines whether an email is spam based on the words in
the email

We are given the task of evaluating these models using Fb-scores. However, we haven’t been given
the values of b to use. What value of b would you use to evaluate each of the models?

Solution

Remember that for models in which precision is more important than recall, we use an Fb-score
with a small value of b. In contrast, for models in which recall is more important than precision,
we use an Fb-score with a large value of b.

note  If you have different scores than this solution, that is completely OK, as long as you
have an argument for which is more important between precision and recall, and for the
value of b that you choose.

•	 For the self-driving car and the medical models, recall is tremendously important
because we want very few false negatives. Thus, I would use a large value of b, such as 4.

•	 For the spam-detection model, precision is important, because we want very few false
positives. Thus, I would use a small value of b, such as 0.25.

•	 For the recommendation system, recall is more important (see exercise 7.3), although
precision also matters. Thus, I would use a large value of b, such as 2.

•	 For the voice assistant, precision is more important, although recall also matters (see
exercise 7.3). Thus, I would use a small value for b, such as 0.5.

score

score

RecallPrecision

Detect a
pedestrian

Movie
recommendations

Spam
detection

Voice
assistant

Diagnose
illness

	 Chapter 8: Using probability to its maximum: The naive Bayes model� 429

Chapter 8: Using probability to its maximum:
The naive Bayes model
Exercise 8.1
For each pair of events A and B, determine whether they are independent or dependent. For (a)
to (d), provide mathematical justification. For (e) and (f) provide verbal justification.

Throwing three fair coins:

a.	 A: First one falls on heads. B: Third one falls on tails.

b.	 A: First one falls on heads. B: There is an odd number of heads among the three throws.

Rolling two dice:

c.	 A: First one shows a 1. B: Second one shows a 2.

d.	 A: First one shows a 3. B: Second one shows a higher value than the first one.

For the following, provide a verbal justification. Assume that for this problem, we live in a place
with seasons.

e.	 A: It’s raining outside. B: It’s Monday.

f.	 A: It’s raining outside. B: It’s June.

Solution

Some of the following can be deduced by intuition. However, sometimes intuition fails when
determining whether two events are independent. For this reason, unless the events are obvi-
ously independent, we’ll stick to checking whether two events A and B are independent if P(A Ç
B) = P(A) P(B).

a.	 Because A and B correspond to tossing different coins, they are independent events.

b.	 P(A) =
1

2
 because flipping a fair coin results in two equally likely scenarios. For the

calculation of P(B), we’ll use “h” for heads and “t” for tails. This way, the event “hth”
corresponds to the first and third coin toss landing on heads and the second one landing
on tails. Thus, if we throw three coins, the eight equally likely possibilities are {hhh, hht,

hth, htt, thh, tht, tth, ttt}. P(B) =
4 1

8 2

= because among the eight equally likely

possibilities (hhh, hht, hth, htt, thh, tht, tth, ttt), only four of them have an odd number

of heads, namely, {hhh, htt, tht, tth}. P(A Ç B) =
2 1

4 2

= because among the eight

possibilities, only two satisfy that the first one falls on heads, and there are an odd

430	 Appendix A I Solutions to the exercises

number of heads, namely, {hhh, htt}. P(A) P(B) =
1

4
 = P(A Ç B), so the events A and B are

independent.

c.	 Because A and B correspond to tossing different dice, they are independent events.

d.	 P(A) =
1

6
, because it corresponds to tossing a die and obtaining a particular value.

P(B) =
5

12
 for the following reason. Notice that the 36 equally likely possibilities for the

scores of the two dice are {11, 12, 13, …, 56, 66}. In six of these, the two dice show the
same value. The remaining 30 correspond to 15 in which the first value is higher, and 15
in which the second value is higher, by symmetry. Therefore, there are 15 scenarios in

which the second die shows a higher value than the third one, so P(B) =
15 5

36 12

= .

P(A Ç B) =
1

2
 for the following reason. If the first die falls on 3, we have a total of six

equally likely scenarios, namely, {31, 32, 33, 34, 35, 36}. Out of these six, the second

number is higher for three of them. Thus, P(A Ç B) =
3 1

6 2

= . Because P(A) P(B) ¹

P(A Ç B), the events A and B are dependent.

e.	 For this problem, we’ll make the assumption that A and B are independent, namely, that
weather is not dependent on the day of the week. This is a fair assumption, given our
knowledge of weather, but if we wanted to be surer, we could look at weather datasets and
verify this by calculating the corresponding probabilities.

f.	 Because we’ve assumed that we live in a place with seasons, June is summer in the
northern hemisphere and winter in the southern hemisphere. Depending on where we
live, it may rain more in the winter or in the summer. Thus, we can assume that events A
and B are dependent.

Exercise 8.2
There is an office where we have to go regularly for some paperwork. This office has two clerks,
Aisha and Beto. We know that Aisha works there three days a week, and Beto works the other two
However, the schedules change every week, so we never know which three days Aisha is there,
and which two days Beto is there.

a.	 If we show up on a random day to the office, what is the probability that Aisha is the
clerk?

We look from outside and notice that the clerk is wearing a red sweater, although we can’t tell
who the clerk is. We’ve been going to that office a lot, so we know that Beto tends to wear red

	 Chapter 8: Using probability to its maximum: The naive Bayes model � 431

more often than Aisha. In fact, Aisha wears red one day out of three (one-third of the time), and
Beto wears red one day out of two (half of the time).

b.	 What is the probability that Aisha is the clerk, knowing that the clerk is wearing red
today?

Solution

Let’s use the following notation for events:

•	 A: the event that the clerk is Aisha

•	 B: The event that the clerk is Beto

•	 R: The event that the clerk is wearing red

a.	 Because Aisha works at the office three days and Beto works two days, the probability

that Aisha is the clerk is P(A) =
3

5
 , or 60%. In addition, the probability that Beto is the

clerk is P(B) =
2

5
, or 40%.

b.	 Intuitively, because Beto wears red more often than Aisha, we imagine that the probability
that the clerk is Aisha is lower than in part a). Let’s check whether the math agrees with
us. We know the clerk is wearing red, so we need to find the probability that the clerk is
Aisha knowing that the clerk is wearing red. This is P(A | R).

The probability that Aisha wears red is
1

3
, so P(R | A) =

1

3
. The probability that Beto wears red

is
1

2
, so P(R | B) =

1

2
.

We can use Bayes theorem to obtain

P(A | R) =
()

() ()

1 3 1
(|) 13 5 5

1 3 1 2 1 1(|) (|) 2
3 5 2 5 5 5

P R A P A

P R A P A P R B P B

⋅
= = =

+ ⋅ + ⋅ +
, or 50%.

A similar calculation shows that the probability that Beto is the clerk is P(B | R) =
1

2
, or 50%.

In effect, the probability that Aisha is the clerk is smaller than the one obtained in part a), so
our intuition was right.

432	 Appendix A I Solutions to the exercises

Exercise 8.3
The following is a dataset of patients who have tested positive or negative for COVID-19. Their
symptoms are cough (C), fever (F), difficulty breathing (B), and tiredness (T).

Cough (C) Fever (F) Difficulty
breathing (B)

Tiredness (T) Diagnosis

Patient 1 X X X Sick

Patient 2 X X X Sick

Patient 3 X X X Sick

Patient 4 X X X Sick

Patient 5 X X Healthy

Patient 6 X X Healthy

Patient 7 X Healthy

Patient 8 X Healthy

The goal of this exercise is to build a naive Bayes model that predicts the diagnosis from the
symptoms. Use the naive Bayes algorithm to find the following probabilities:

note  For the following questions, the symptoms that are not mentioned are completely
unknown to us. For example, if we know that the patient has a cough, but nothing is said
about their fever, it does not mean the patient doesn’t have a fever.

a.	 The probability that a patient is sick given that the patient has a cough

b.	 The probability that a patient is sick given that the patient is not tired

c.	 The probability that a patient is sick given that the patient has a cough and a fever

d.	 The probability that a patient is sick given that the patient has a cough and a fever, but no
difficulty breathing

Solution

For this problem, we have the following events:

•	 C: the event that the patient has a cough

•	 F: the event that the patient has a fever

•	 B: the event that the patient has difficulty breathing

•	 T: the event that the patient is tired

•	 S: the event that the patient has been diagnosed as sick

•	 H: the event that the patient has been diagnosed as healthy

	 Chapter 8: Using probability to its maximum: The naive Bayes model � 433

Furthermore, Ac denotes the complement (opposite) of the event A. Thus, for example, T c rep-
resents the event that the patient is not tired.

First, let’s calculate P(S) and P(H). Note that because the dataset contains four healthy and

four sick patients, both of these (prior) probabilities are
1

2
, or 50%.

a.	 Because four patients have a cough and three of them are sick, P(S | C) =
3

4
, or 75%.

Equivalently, we can use Bayes’ theorem in the following way: first, we calculate

P(S | C) =
3

4
 by noticing that there are four sick patients, and three of them have a cough.

We also notice that P(C | H) =
1

4
, because there are four healthy patients, and only one of

them has a cough.

Now we can use the formula

()
() ()

3 1
(|) 34 2(|) .

3 1 1 1(|) (|) 4
4 2 4 2

P C S P S
P S C

P C S P S P C H P H

⋅
= = =

+ ⋅ + ⋅

b.	 Because three patients are not tired and only one of them is sick, P(S | T c) =
1

3
, or 33.3%.

We can also use Bayes’ theorem as before. Notice that P(T c | S) =
1

4
because only one out

of the four sick patients is not tired. Also, P(T c | S) =
2

4
, because two out of the four

healthy patients are not tired.

By Bayes’ theorem,

()
() ()

11 1
(|) 184 2(|)

1 1 2 1 1 2(|) (|) 3
4 2 4 2 8 8

c
c

c c

P T S P S
P S T

P T S P S P T H P H

⋅
= = = =

+ ⋅ + ⋅ +
.

c.	 C Ç F represents the event that the patient has a cough and a fever, so we need to calculate
P(S | C Ç F).

Recall from part a) that P(S | C) =
3

4
 and P(C | H) =

1

4
.

434	 Appendix A I Solutions to the exercises

Now we need to calculate P(F | S) and P(F | H). Note that because there are four sick

patients and three of them have a fever, P(F | S) =
3

4
. Similarly, two out of the four

healthy patients have a fever, so P(F | H) =
2

4
 =

1

2
.

We are ready to use the naive Bayes algorithm to estimate the probability that the patient
is sick given that they have a cough and fever. Using the formula in the section “What
about two words? The naive Bayes algorithm” in chapter 8, we get

()
() ()

(|) (|)
(|)

(|) (|) (|) (|)

P C S P F S P S
P S C F

P C S P F S P S P C H P F H P H
∩ =

+

93 3 1
9324 4 2

3 3 1 1 2 1 9 2 11
4 4 2 4 4 2 32 32

⋅ ⋅
= = =

⋅ ⋅ + ⋅ ⋅ +
 or 81.82%.

d.	 For this exercise we need to find P(S | C Ç F Ç B c).

Note that because there are four sick patients and only one of them has no difficulty

breathing, P(B c | S) =
1

4
. Similarly, there are four healthy patients and three of them have

no difficulty breathing, so P(B c | H) =
3

4
.

As before, we can use the naive Bayes algorithm.

()
() ()

(|) (|) (|)
(|)

(|) (|) (|) (|) (|) (|)

c
c

c c

P C S P F S P B S P S
P S C F B

P C S P F S P B S P S P C H P F H P B H P H
∩ ∩ =

+

93 3 1 1
9324 4 4 2

3 3 1 1 1 2 3 1 9 6 15
4 4 4 2 4 4 4 2 32 32

⋅ ⋅ ⋅
= =

⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +
, or 60%.

	 Chapter 9: Splitting data by asking questions: Decision trees� 435

Chapter 9: Splitting data by asking questions:
Decision trees
Exercise 9.1
In the following spam-detection decision tree model, determine whether an email from your
mom with the subject line “Please go to the store, there’s a sale,” will be classified as spam.

Unknown
sender?

Contains
the word

“sale”

Yes No

Yes No

Spam

Spam Ham

Solution

First we check whether the sender is unknown. Because the sender is our mom, the sender is not
unknown. Thus, we take the branch on the right. We must check whether the email contains
the word “sale.” The email contains the word “sale,” so the classifier (incorrectly) classifies it as
spam.

Exercise 9.2
Our goal is to build a decision tree model to determine whether credit card transactions are
fraudulent. We use the dataset of credit card transactions below, with the following features:

•	 Value: value of the transaction.

•	 Approved vendor: the credit card company has a list of approved vendors. This variable
indicates whether the vendor is in this list.

436	 Appendix A I Solutions to the exercises

Value Approved vendor Fraudulent

Transaction 1 $100 Not approved Yes

Transaction 2 $100 Approved No

Transaction 3 $10,000 Approved No

Transaction 4 $10,000 Not approved Yes

Transaction 5 $5,000 Approved Yes

Transaction 6 $100 Approved No

Build the first node of the decision tree under the following specifications:

a.	 Using the Gini impurity index

b.	 Using entropy

Solution

In both cases, the best split is obtained using the Approved vendor feature, as in the next image.

Let’s call the transactions T
1
, T

2
, T

3
, T

4
, T

5
, and T

6
.

First, let’s look at all the following splits we can make. The split using Approved vendor is easy,
because this is a categorical variable with two categories. The Value column is more compli-
cated—we can use it to split the data in two possible ways. One is when the cutoff is some value
between $100 and $5,000, and the other one when it is some value between $5,000 and $10,000.
To summarize, these are all the possible splits:

•	 Value 1: where the cutoff value is between $100 and $5,000. The two classes here are {T
1
,

T
2
, T

6
} and {T

3
, T

4
, T

5
}.

•	 Value 2: where the cutoff value is some value between $5,000 and $10,000. The two
classes here are {T

1
, T

2
, T

5
, T

6
} and {T

3
, T

4
}.

	 Chapter 9: Splitting data by asking questions: Decision trees� 437

•	 Approved vendor: the two classes are “approved” and “not approved,” or equivalently,
{T

2
, T

3
, T

5
, T

6
} and {T

1
, T

4
}.

a.	 Let’s calculate the Gini impurity index for each one of the following four splits:

Value 1: cutoff value between $100 and $5,000

Note that for the first class {T
1
, T

2
, T

6
}, the labels in the Fraudulent column are {“yes”,

“no”, “no”}. The Gini impurity index of this split is
2 2

1 2 4
1

3 3 9
   − − =      

.

Note that for the second class {T
3
, T

4
, T

5
}, the labels in the Fraudulent column are {“no”,

“yes”, “yes”}. The Gini impurity index of this split is
2 2

2 1 4
1

3 3 9
   − − =      

.

Thus, the weighted Gini impurity index for this split is
3 4 3 4 4

 0.444
6 9 6 9 9

⋅ + ⋅ = = .

Value 2: cutoff value between $5,000 and $10,000

For the first class {T
1
, T

2
, T

5
, T

6
}, the labels in the Fraudulent column are {“yes”, “no”,

“yes”, “no”}. The Gini impurity index of this split is
2 2

2 2 1
1

4 4 2
   − − =      

.

Note that for the second class {T
3
, T

4
}, the labels in the Fraudulent column are {“no”,

“yes”}. The Gini impurity index of this split is
2 2

1 1 1
1

2 2 2
   − − =      

.

Thus, the weighted Gini impurity index for this split is
4 1 2 1 1

 0.5
6 2 6 2 2

⋅ + ⋅ = = .

Approved vendor:

For the first class {T
2
, T

3
, T

5
, T

6
}, the labels in the Fraudulent column are {“no”, “no”,

“yes,” “no”}. The Gini impurity index of this split is
2 2

3 1 6
1

4 4 16
   − − =      

.

For the second class {T
1
, T

4
}, the labels in the Fraudulent column are {“yes”, “yes”}. The

Gini impurity index of this split is 1 – 12 = 0.

Thus, the weighted Gini impurity index for this split is
4 6 2 1

 0 0.25
6 16 6 4

⋅ + ⋅ = = .

Notice that out of these three values, the lowest is 0.25, corresponding to the Approved
vendor column. This implies that the best way to split this data is using the Approved
vendor feature.

438	 Appendix A I Solutions to the exercises

b.	 For this part, we’ve done most of the heavy lifting already. We’ll follow the same
procedure as in part a), except calculating the entropy at each stage instead of the Gini
impurity index.

Value 1: cutoff value between $100 and $5,000

The entropy of the set {“yes”, “no”, “no”} is 2 2

1 1 2 2
 0.918

3 3 3 3
log log

   − − =      
.

The entropy of the set {“no”, “yes”, “yes”} is also 2 2

2 2 1 1
 0.918

3 3 3 3
log log

   − − =      
.

Thus, the weighted entropy for this split is
3 3

0.918 0.918 0.918
6 6

⋅ + ⋅ = .

Value 2: cutoff value between $5,000 and $10,000

The entropy of the set {“yes”, “no”, “yes”, “no”} is 2 2

2 2 2 2
 1

4 4 4 4
log log

   − − =      
.

The entropy of the set {“no”, “yes”} is 2 2

1 1 1 1
 1

2 2 2 2
log log

   − − =      
.

Thus, the weighted entropy for this split is
4 2

1 1 1
6 6

⋅ + ⋅ = .

Approved vendor:

The entropy of the set {“no”, “no”, “yes”, “no”} is 2 2

1 1 3 3
 0.811

4 4 4 4
log log

   − − =      
.

The entropy of the set {“yes”, “yes”} is 2

2 2
 0

2 2
log

 − =  
.

Thus, the weighted entropy for this split is
4 2

0.811 0 0.541
6 6

⋅ + ⋅ = .

Notice that among these three, the smallest entropy is 0.541, corresponding to the
Approved vendor column. Thus, the best way to split this data is, again, using the
Approved vendor feature.

Exercise 9.3
A dataset of patients who have tested positive or negative for COVID-19 follows. Their symptoms
are cough (C), fever (F), difficulty breathing (B), and tiredness (T).

	 Chapter 9: Splitting data by asking questions: Decision trees� 439

Cough
(C)

Fever (F) Difficulty
breathing (B)

Tiredness (T) Diagnosis

Patient 1 X X X Sick

Patient 2 X X X Sick

Patient 3 X X X Sick

Patient 4 X X X Sick

Patient 5 X X Healthy

Patient 6 X X Healthy

Patient 7 X Healthy

Patient 8 X Healthy

Using accuracy, build a decision tree of height 1 (a decision stump) that classifies this data. What
is the accuracy of this classifier on the dataset?

Solution

Let’s call the patients P
1
 up to P

8
. The sick patients will be denoted by “s,” and the healthy ones

by “h.”
First notice that the first split can be any of the four features C, F, B, and T. Let’s first calculate

the accuracy of the classifier obtained by splitting the data on feature C, namely, the classifier we
build based on the question, “Does the patient have a cough?”

Splitting based on the C feature:

•	 Patients with a cough: {P
2
, P

3
, P

4
, P

5
}. Their labels are {s, s, s, h}.

•	 Patients without a cough: {P
1
, P

6
, P

7
, P

8
} . Their labels are {s, h, h, h}.

Looking at this, we can see that the most accurate classifier (only based on the C feature) is the
one that classifies every person with a cough as sick and every person without a cough as healthy.
This classifier correctly classifies six out of the eight patients (three sick and three healthy), so its
accuracy is 6/8, or 75%.

Now, let’s follow the same procedure with the other three features.

Splitting based on the F feature:

•	 Patients with a fever: {P
1
, P

2
, P

4
, P

6
, P

7
}. Their labels are {s, s, s, h, h}.

•	 Patients without a fever: {P
3
, P

5
, P

8
}. Their labels are {s, h, h}.

Looking at this, we can see that the most accurate classifier (only based on the F feature) is the
one that classifies every patient with a fever as sick and every patient without a fever as healthy.
This classifier correctly classifies five out of the eight patients (three sick and two healthy), so its
accuracy is 5/8, or 62.5%.

440	 Appendix A I Solutions to the exercises

Splitting based on the B feature:

•	 Patients showing difficulty breathing: {P
1
, P

3
, P

4
, P

5
}. Their labels are {s, s, s, h}.

•	 Patients not showing difficulty breathing: {P
2
, P

6
, P

7
, P

8
}. Their labels are {s, h, h, h}.

Looking at this, we can see that the most accurate classifier (based only on the B feature) is the
one that classifies every patient showing difficulty breathing as sick and every patient not show-
ing difficulty breathing as healthy. This classifier correctly classifies six out of the eight patients
(three sick and three healthy), so its accuracy is 6/8, or 75%.

Splitting based on the T feature:

•	 Patients that are tired: {P
1
, P

2
, P

3
, P

5
, P

8
}. Their labels are {s, s, s, h, h}.

•	 Patients that are not tired: {P
4
, P

5
, P

7
}. Their labels are {s, h, h}.

Looking at this, we can see that the most accurate classifier (based only on the F feature) is the
one that classifies every tired patient as sick and every patient that is not tired as healthy. This
classifier correctly classifies five out of the eight patients (three sick and two healthy), so its accu-
racy is 5/8, or 62.5%.

Note that the two features that give us the best accuracy are C (cough) and B (difficulty breath-
ing). The decision tree will pick one of these at random. Let’s pick the first one, C. After we split
the data using the C feature, we obtain the following two datasets:

•	 Patients with a cough: {P
2
, P

3
, P

4
, P

5
}. Their labels are {s, s, s, h}.

•	 Patients without a cough: {P
1
, P

6
, P

7
, P

8
}. Their labels are {s, h, h, h}.

This gives us our tree of depth 1 that classifies the data with a 75% accuracy. The tree is depicted
in the next figure.

Does the patient have a cough?

NoYes

S S S S H H H H

Accuracy = = 75%

Classify as sick. Classify as healthy.

S S S H S H H H

	 Chapter 10: Combining building blocks to gain more power: Neural networks� 441

Chapter 10: Combining building blocks to gain more
power: Neural networks

Exercise 10.1
The following image shows a neural network in which all the activations are sigmoid functions.

1 1

1

2

–1

–1

–1

–1

–2

2

1

1

3

What would this neural network predict for the input (1,1)?

Solution

Let’s call the outputs of the middle nodes h
1
 and h

2
. These are calculated as follows:

h
1
= s(1 · x

1
– 2 · x

2
– 1)

h
2
=s(–1 · x

1
+ 3 · x

2
– 1)

Plugging in x
1
= 1 and x

2
= 1, we get the following:

h
1
= s(–2) = 0.119

h
2
= s(1) = 0.731

The final layer is

ŷ = s(–1 · h
1
 + 2 · h

2
 + 1).

Replacing the values previously obtained for h
1
 andh

2
, we get

ŷ = s(–0.119 + 2 · 0.731 + 1) = s(2.343) = 0.912.

Thus, the output of the neural network is 0.912.

442	 Appendix A I Solutions to the exercises

Exercise 10.2
As we learned in exercise 5.3, it is impossible to build a perceptron that mimics the XOR gate. In
other words, it is impossible to fit the following dataset with a perceptron and obtain 100%
accuracy:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

This is because the dataset is not linearly separable. Using a neural network of depth 2, build a
perceptron that mimics the XOR gate shown previously. As the activation functions, use the step
function instead of the sigmoid function to get discrete outputs.

hint  This will be hard to do using a training method; instead, try eyeballing the weights.
Try (or search online how) to build an XOR gate using AND, OR, and NOT gates, and use
the results of exercise 5.3 to help you.

Solution

Note that the following combination of AND, OR, and NOT gates forms an XOR gate (where the
NAND gate is the combination of an AND gate and a NOT gate).

OR

NAND

AND

1

2

The following truth table illustrates it.

x1 x2 h1 = x1 OR x2 h2 = x1 NAND x2 h1 AND h2 x1 XOR x2

0 0 0 1 0 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 1 0 0 0

	 Chapter 10: Combining building blocks to gain more power: Neural networks� 443

As we did in exercise 5.3, here are perceptrons that mimic the OR, NAND, and AND gates. The
NAND gate is obtained by negating all the weights in the AND gate.

1

1

2

–0.5

1

OR

1

1

1

2

1.5

–1

–1

1

1

2

–1.5

1

1

NAND AND

Joining these together, we get the neural network shown in the next figure.

1 1

1

2

1.5

1

–0.5

–1

1

1

1 OR

NAND

–1.5

–1 AND

I encourage you to verify that this network does indeed mimic the XOR logic gate. This is done
by inputting the four vectors (0,0), (0,1), (1,0), (1,1) through the network and verifying that the
outputs are 0, 1, 1, 0.

Exercise 10.3
At the end of the section “A graphical representation of neural networks,” we saw that the neural
network in figure 10.13 with the activation function doesn’t fit the dataset in table 10.1, because
the point (1,1) is misclassified.

a.	 Verify that this is the case.

b.	 Change the weights so that the neural network classifies every point correctly.

444	 Appendix A I Solutions to the exercises

Solution

a.	 For the point (x
a
, x

b
) = (1, 1), the predictions are the following:

C = s(6 · 1 + 10 · 1 – 15) = s(1) = 0.731

F = s(10 · 1 + 6 · 1 – 15) = s(1) = 0.731

ŷ = s(1 · 0.731 + 1 · 0.731 – 1.5) = s(–0.39) = 0.404

Because the prediction is closer to 0 than to 1, the point is misclassified.

b.	 Reducing the bias in the final node to anything less than 2 · 0.731 = 1.461 will do. For
example, if this bias was 1.4, the prediction at the point (1,1) would be higher than 0.5. As
an exercise, I encourage you to verify that this new neural network correctly predicts the
labels for the remaining points.

Chapter 11: Finding boundaries with style:
Support vector machines and the kernel method
Exercise 11.1
(This exercise completes the calculation needed in the section “Distance error function.”)

Show that the distance between the lines with equations w
1
x

1
 + w

2
x

2
 + b = 1 and w

1
x

1
 + w

2
x

2

+ b = –1 is precisely 2 2
1 2

2

 w w+ .

Distance =

	 Chapter 11: Finding boundaries with style: Support vector machines and the kernel method � 445

Solution

First, let us call the lines as follows:

•	 L
1
 is the line with equation w

1
x

1
 + w

2
x

2
 + b = 1.

•	 L
2
 is the line with equation w

1
x

1
 + w

2
x

2
 + b = –1.

Note that we can rewrite the equation w
1
x

1
 + w

2
x

2
 + b = 0 as x

2
 = – 2

1

w

w
 x

1
 – b, with slope – 2

1

w

w
. Any

perpendicular to this line has slope 2

1

w

w
. In particular, the line with equation x

2
= 2

1

w

w
 x

1
 is per-

pendicular to both L
1
 and L

2
. We’ll call this line L

3
.

Next, we solve for the points of intersection of L
3
 with each of the lines L

1
 and L

2
. The point of

intersection of L
1
 and L

3
 is the solution to the following equations:

•	 w
1
x

1
 + w

2
x

2
 + b = 1

•	 x
2
= 1

2

w

w
 x

1

We can plug the second equation into the first one, to obtain

w
1
x

1
 + w

2
 · 1

2

w

w
 x

1
+ b = 1,

and subsequently solve for x
1
 to obtain

1

1

1
 .

2

b
x

w

−
=

Therefore, because every point in L
2
 has the form (x, 1

2

w

w
 x), the point of intersection of L

1
 and L

3

is the point with coordinates
1 2

1 1
, .

b b

w w

 − −
  

A similar calculation will show that the point of intersection of L
2
 and L

3
 is the point with

coordinates
1 2

1 1
, .

b b

w w

 − −
  

To find the distance between these two points, we can use the Pythagorean theorem. This dis-
tance is

2 2 2 2

2 2
1 1 2 2 1 2 1 2

1 1 1 1 2 2 2

b b b b

w w w w w w w w

       − − − − − −
− + − = + =               +

,

as desired.

446	 Appendix A I Solutions to the exercises

Exercise 11.2
As we learned in exercise 5.3, it is impossible to build a perceptron model that mimics the XOR
gate. In other words, it is impossible to fit the following dataset (with 100% accuracy) with a
perceptron model:

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

This is because the dataset is not linearly separable. An SVM has the same problem, because an
SVM is also a linear model. However, we can use a kernel to help us out. What kernel should we
use to turn this dataset into a linearly separable one? What would the resulting SVM look like?

hint  Look at example 2 in the section “Using polynomial equations to your benefit,”
which solves a very similar problem.

	 Chapter 12: Combining models to maximize results: Ensemble learning� 447

Solution

Considering the polynomial kernel of degree two, we get the following dataset:

x1 x2 x1
2 x1 x2 x2

2 y

0 0 0 0 0 0

0 1 0 0 1 1

1 1 1 0 0 1

1 1 1 1 1 0

Several classifiers work on this modified dataset. For example, the one with equation ŷ = step(x
1

+ x
2
 – 2x

1
x

2
 – 0.5) classifies the data correctly.

Chapter 12: Combining models to maximize results:
Ensemble learning
Exercise 12.1
A boosted strong learner L is formed by three weak learners, L

1
, L

2
, and L

3
. Their weights are 1,

0.4, and 1.2, respectively. For a particular point, L
1
 and L

2
 predict that its label is positive, and L

3

predicts that it’s negative. What is the final prediction the learner L makes on this point?

Solution

Because L
1
 and L

2
 predicted that the label is positive and L

3
 predicted that it is negative, the sum

of votes is

1 + 0.4 – 1.2 = 0.2.

This result is positive, which means that the strong learner predicts that the label of this point is
positive.

Exercise 12.2
We are in the middle of training an AdaBoost model on a dataset of size 100. The current weak
learner classifies 68 out of the 100 data points correctly. What is the weight that we’ll assign to
this learner in the final model?

Solution

This weight is the log odds, or the natural logarithm of the odds. The odds are 68/32, because the
classifier classifies 68 points correctly and misclassifies the remaining 32. Therefore, the weight
assigned to this weak learner is

weight = ln
68

32

 
  

 = 0.754.

448	 Appendix A I Solutions to the exercises

Chapter 13: Putting it all in practice: A real-life
example of data engineering and machine learning
Exercise 13.1
The repository contains a file called test.csv. This is a file with more passengers on the Titanic,
except it doesn’t have the Survived column.

1.	 Preprocess the data in this file as we did in this chapter.

2.	 Use any of the models to predict labels in this dataset. According to your model, how
many passengers survived?

3.	 Comparing the performance of all the models in this chapter, how many passengers from
the test set would you think actually survived?

Solution

The solution is at the end of the following notebook: https://github.com/luisguiserrano/manning/
tree/master/Chapter_13_End_to_end_example.

https://github.com/luisguiserrano/manning/tree/master/Chapter_13_End_to_end_example
https://github.com/luisguiserrano/manning/tree/master/Chapter_13_End_to_end_example

449

Appendix
The math behind gradient descent:

Coming down a mountain
using derivatives and slopes

B

In this appendix, we’ll go over the mathematical details of gradient descent. This appendix is fairly
technical, and understanding it is not required to follow the rest of the book. However, it is here to
provide a sense of completeness for the readers who wish to understand the inner workings of some
of the core machine learning algorithms. The mathematics knowledge required for this appendix is
higher than for the rest of the book. More specifically, knowledge of vectors, derivatives, and the
chain rule is required.

In chapters 3, 5, 6, 10, and 11, we used gradient descent to minimize the error functions in our
models. More specifically, we used gradient descent to minimize the following error functions:

•	 Chapter 3: the absolute and square error functions in a linear regression model

•	 Chapter 5: the perceptron error function in a perceptron model

•	 Chapter 6: the log loss in a logistic classifier

•	 Chapter 10: the log loss in a neural network

•	 Chapter 11: the classification (perceptron) error and the distance (regularization) error in
an SVM

As we learned in chapters 3, 5, 6, 10, and 11, the error function measures how poorly the model is
doing. Thus, finding the minimum value for this error function—or at least a really small value,
even if it’s not the minimum—will be instrumental in finding a good model.

The analogy we used was that of descending a mountain—Mount Errorest, shown in figure B.1.
The scenario is the following: You are somewhere on top of a mountain, and you’d like to get to the
bottom of this mountain. It is very cloudy, so you can’t see far around you. The best bet you can have
is to descend from the mountain one step at a time. You ask yourself , “If I were to take only one step,
in which direction should I take it to descend the most?” You find that direction and take that step.
Then you ask the same question again, and take another step, and you repeat the process many times.
It is imaginable that if you always take the one step that helps you descend the most, that you must

450	 Appendix B I The math behind gradient descent

get to a low place. You may need a bit of luck to actually get to the bottom of the mountain, as
opposed to getting stuck in a valley, but we’ll deal with this later in the section “Getting stuck on
local minima.”

Mount

Errorest

Mount

Errorest

Figure B.1  In the gradient descent step, we want to descend from a mountain called Mount Errorest.

Throughout the following sections we’ll describe the mathematics behind gradient descent and
use it to help us train several machine learning algorithms by decreasing their error functions.

Using gradient descent to decrease functions
The mathematical formalism of gradient descent follows: say you want to minimize the function
f(x

1
, x

2
, …, x

n
) on the n variables x

1
, x

2
, …, x

n
. We assume the function is continuous and differ-

entiable over each of the n variables.
We are currently standing at the point p with coordinates (p

1
, p

2
, …, p

n
), and we wish to find the

direction in which the function decreases the most, in order to take that step. This is illustrated in
figure B.2. To find the direction in which the function decreases the most, we use the gradient of
the function. The gradient is the n-dimensional vector formed by the partial derivatives of f with
respect to each of the variables x

1
, x

2
, …, x

n
. This gradient is denoted as ∇f, as follows:

1 2

, , ,
n

f f f
f

x x x

 ∂ ∂ ∂
∇ = … ∂ ∂ ∂ 

The gradient is a vector that points in the direction of greatest growth, namely, the direction in
which the function increases the most. Thus, the negative of the gradient is the direction in which
the function decreases the most. This is the step we want to take. We determine the size of the
step using the learning rate we learned in chapter 3 and which we denote with h. The gradient
descent step consists of taking a step of length h|∇f | in the direction of the negative of the gradi-
ent ∇f. Thus, if our original point was p, after applying the gradient descent step, we obtain the
point p – h∇f. Figure B.2 illustrates the step that we’ve taken to decrease the function f.

	 Using gradient descent to decrease functions� 451

Figure B.2  We were originally at the point p. We take a step in the direction of the negative of the gradient
and end up at a new point. This is the direction in which the function decreases the most. (Source: Image
created with the assistance of Grapher™ from Golden Software, LLC; https://www.goldensoftware.com/
products/grapher.)

Now that we know how to take one step to slightly decrease the function, we can simply repeat
this process many times to minimize our function. Thus, the pseudocode of the gradient descent
algorithm is the following:

Pseudocode for the gradient descent algorithm

Goal: To minimize the function f.

Hyperparameters:

•	 Number of epochs (repetitions) N

•	 Learning rate h

Process:

•	 Pick a random point p
0
.

•	 For i = 0, …, N – 1:

	– Calculate the gradient ∇f(p
i
).

	– Pick the point p
i + 1

 = p
i
 – h∇f(p

i
).

•	 End with the point p
n
.

https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher

452	 Appendix B I The math behind gradient descent

Figure B.3  If we repeat the gradient descent step many times, we have a high chance of finding the minimum
value of the function. In this figure, p1 represents the starting point and pn the point we have obtained using
gradient descent. (Source: Image created with the assistance of Grapher™ from Golden Software, LLC; https://
www.goldensoftware.com/products/grapher.)

Does this process always find the minimum of the function? Unfortunately, no. Several problems
may occur when trying to minimize a function using gradient descent, such as getting stuck at a
local minimum (a valley). We’ll learn a very useful technique to deal with this problem in the
section “Getting stuck on local minima.”

Using gradient descent to train models
Now that we know how gradient descent helps us minimize (or at least, find small values for) a
function, in this section we see how to use it to train some machine learning models. The models
we’ll train follow:

•	 Linear regression (from chapter 3).

•	 Perceptron (from chapter 5).

•	 Logistic classifier (from chapter 6).

•	 Neural network (from chapter 10).

•	 Regularization (from chapters 4 and 11). This one is not a model, but we can still see the
effects that a gradient descent step has on a model that uses regularization.

https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher

	 Using gradient descent to train models� 453

The way we use gradient descent to train a model is by letting f be the corresponding error func-
tion of the model and using gradient descent to minimize f. The value of the error function is
calculated over the dataset. However, as we saw in the sections “Do we train using one point at a
time or many” in chapter 3, “Stochastic, mini-batch, and batch gradient descent” in chapter 6,
and “Hyperparameters” in chapter 10, if the dataset is too large, we can speed up training by
splitting the dataset into mini-batches of (roughly) the same size and, at each step, picking a dif-
ferent mini-batch on which to calculate the error function.

Here is some notation we’ll use in this appendix. Most of the terms have been introduced in
chapters 1 and 2:

•	 The size of the dataset, or the number of rows, is m.

•	 The dimension of the dataset, or number of columns, is n.

•	 The dataset is formed by features and labels.

•	 The features are the m vectors x
i
 = (x

1
(i), x

2
(i), …, x

n
(i)) for i = 1, 2, …, m.

•	 The labels y
i
, for i = 1, 2, …, m.

•	 The model is given by the vector of n weights w = (w
1
, w

2
, …, w

n
) and the bias b (a scalar)

(except when the model is a neural network, which will have more weights and biases).

•	 The predictions ˆ
iy , for i = 1, 2, …, m.

•	 The learning rate of the model is h.

•	 The mini-batches of data are B
1
, B

2
, …, B

l
, for some number l. Each mini-batch has

length q. The points in one mini-batch (for notational convenience) are denoted x(1), …,
x(q), and the labels are y

1
, …, y

q
.

The gradient descent algorithm that we’ll use for training models follows:

Gradient descent algorithm for training machine learning models

Hyperparameters:

•	 Number of epochs (repetitions) N

•	 Learning rate h

Process:

•	 Pick random weights w
1
, w

2
, …, w

n
 and a random bias b.

•	 For i = 0, …, N – 1:

	– For each of the mini-batches B
1
, B

2
, …, B

l
.

	– Calculate the error function f(w, b) on that particular mini-batch.

	– Calculate the gradient
1

1

(, , ,) , , ,n

n

f f f
f w w b

w w b

 ∂ ∂ ∂
∇ … = … ∂ ∂ ∂ 

.

454	 Appendix B I The math behind gradient descent

	– Replace the weights and bias as follows:

	– w
i
 gets replaced by i i

i

f
w w

w
η

∂
′ = −

∂
.

	– b gets replaced by
f

b b
b

η
∂

′ = −
∂

.

Throughout the following subsections, we will perform this process in detail for each of the fol-
lowing models and error functions:

•	 Linear regression model with the mean absolute error function (the following section)

•	 Linear regression model with the mean square error function (the following section)

•	 Perceptron model with the perceptron error function (the section “Using gradient
descent to train classification models”)

•	 Logistic regression model with the log loss function (the section “Using gradient descent
to train classification models”)

•	 Neural network with the log loss function (the section “Using gradient descent to train
neural networks”)

•	 Models with regularization (the section “Using gradient descent for regularization”)

Using gradient descent to train linear regression models
In this section, we use gradient descent to train a linear regression model, using both of the error
functions we’ve learned previously: the mean absolute error and the mean square error. Recall
from chapter 3 that in linear regression, the predictions 1 2

ˆ ˆ ˆ, , , qy y y… are given by the following
formula:

()

1

ˆ
n

i
i j j

j

y w x b
=

= +∑

The goal of our regression model is to find the weights w
1
, …, w

n
, which produce predictions that

are really close to the labels. Thus, the error function helps by measuring how far ˆ
iy is from y for

a particular set of weights. As we’ve seen in sections “The absolute error” and “The square error”
in chapter 3, we have two different ways to calculate this distance. The first is the absolute value

ˆ| |y y− , and the second one is the square of the difference 2ˆ()y y− . The first one gives rise to the
mean absolute error, and the second one to the mean square error. Let’s study them separately.

Training a linear regression model using gradient descent to reduce the mean
absolute error

In this subsection, we’ll calculate the gradient of the mean absolute error function and use it to
apply gradient descent and train a linear regression model. The mean absolute error is a way to
tell how far apart ˆ

iy and y are. It was first defined in the section “The absolute error” in chapter 3,
and its formula follows:

	 Using gradient descent to train models� 455

1

1
ˆ(, , ,) | |

q

l i
i

MAE w b x y y y
q =

= −∑

For convenience, we’ll abbreviate MAE(w, b, x, y) as MAE. To use gradient descent to reduce
MAE, we need to calculate the gradient ∇MAE, which is the vector containing the n + 1 partial
derivatives of MAE with respect to w

1
, …, w

n
, b,

1

, , , .
n

MAE MAE MAE
MAE

w w b

 ∂ ∂ ∂
∇ = … ∂ ∂ ∂ 

We’ll calculate these partial derivatives using the chain rule. First, notice that

1

ˆ| |1
.

q
i i

ij j

y yMAE

w q w=

∂ −∂
=

∂ ∂∑

The derivative of f(x) = |x| is the sign function
| |

()
x

sgn x
x

= , which is +1 when x is positive and

–1 when x is negative (it is undefined at 0, but for convenience we can define it to be 0). Thus, we
can rewrite the previous equation as

1

ˆ1
ˆ() .

q
i

i i
ii j

yMAE
sgn y y

w q w=

∂∂
= −

∂ ∂∑

To calculate this value, let’s focus on the final part of the equation, namely, the
ˆ

i

j

y

w

∂
∂ . Since

ŷ
i
 =

n

j 1=∑ w
j
x

j
(i), then

()() ()

1

ˆ

i
n

j j ii
j

jj j

w xy
x

w w=

∂∂
= =

∂ ∂∑ .

This is because the derivative of w
j
 with respect to w

i
, is 1 if j = i and 0 otherwise. Thus, replacing

on the derivative, we get the following:

() ()

1

1
ˆ sgn

q
i

i i j
ii

MAE
y y x

w q =

∂
= −

∂ ∑

Using a similar analysis, we can calculate the derivative of MAE(w, b) with respect to b to be

()
1

1
ˆ sgn .

q

i i
ib

MAE
y y

q =

∂
= −

∂ ∑

456	 Appendix B I The math behind gradient descent

The gradient descent step is the following:

Gradient descent step:

Replace (w, b) by (w', b'), where

•	 ()

1

1
ˆ()

q
i

j j i i j
i

w w sgn y y x
q

η
=

′ = + −∑ for i = 1, 2, …, n

•	
1

ˆ() =
q

i i
i

sgn yb yb η
=

+ −′ ∑

Notice something interesting: if the mini-batch has size q = 1 and consists only of the point x =
(x

1
, x

2
, …, x

n
) with label y and prediction ŷ, then the step is defined as follows:

Replace (w, b) by (w', b'), where

•	 w
j
' = w

j
 + h sgn(y – ŷ)x

j

•	 b' = b + h sgn(y – ŷ)

This is precisely the simple trick we used in the section “The simple trick” in chapter 3 to train our
linear regression algorithm.

Training a linear regression model using gradient descent to reduce the mean square
error

In this subsection, we’ll calculate the gradient of the mean square error function and use it to
apply gradient descent and train a linear regression model. The mean square error is another way
to tell how far apart ŷ and y are. It was first defined in the section “The square error” in chapter 3
and its formula is

2

1

1
ˆ(, , ,) () .

2

q

i i
i

MSE w b x y y y
m =

= −∑

For convenience, we’ll abbreviate MSE(w, b, x, y) as MSE. To calculate the gradient ∇MSE, we
can follow the same procedure as we did for the mean absolute error described earlier, with the
exception that the derivative of f(x) = x2 is 2x. Therefore, the derivative of MSE with respect to
w

j
 is

2

1 1 1

ˆ ˆ ˆ()1 1 1
ˆ ˆ2() () .

2 2

q q q
i i i i

i i i i
i i ij j j j

y y y yMSE
y y y y

w q w q w q w= = =

∂ − ∂ ∂∂
= = − = −

∂ ∂ ∂ ∂∑ ∑ ∑

Similarly, the derivative of MSE(w, b) with respect to b is

2

1 1 1

ˆ ˆ ˆ()1 1 1
ˆ ˆ2() () .

2 2

q q q
i i i i

i i i i
i i i

y y y yMSE
y y y y

b q b q b q b= = =

∂ − ∂ ∂∂
= = − = −

∂ ∂ ∂ ∂∑ ∑ ∑

	 Using gradient descent to train models� 457

Gradient descent step:

Replace (w, b) by (w', b'), where

•	
()

1

1
ˆ()

q
i

j j i i j
i

w w y y x
q

η
=

′ = + −∑ for i = 1, 2, …, n

•	
1

1
ˆ()

q

i i
i

y y
q

b b η
=

′ = + −∑

Notice again that if the mini-batch has size q = 1 and consists only of the point x = (x
1
, x

2
, …, x

n
)

with label y and prediction ŷ, then the step is defined as follows:

Replace (w, b) by (w', b'), where

•	 w
j
' = w

j
 + h(y – ŷ)x

j

•	 b' = b + h(y – ŷ)

This is precisely the square trick we used in the section “The square trick” in chapter 3 to train our
linear regression algorithm.

Using gradient descent to train classification models
In this section we learn how to use gradient descent to train classification models. The two mod-
els that we’ll train are the perceptron model (chapter 5) and the logistic regression model (chap-
ter 6). Each one of them has its own error function, so we will develop them separately.

Training a perceptron model using gradient descent to reduce the perceptron error

In this subsection, we’ll calculate the gradient of the perceptron error function and use it to apply
gradient descent and train a perceptron model. In the perceptron model, the predictions are ŷ

1
,

ŷ
2
, …, ŷ

q
 where each ŷ

i
 is 0 or 1. To calculate the predictions, we first need to remember the step

function step(x), introduced in chapter 5. This function takes as an input any real number x and
outputs 0 if x < 0 and 1 if x ³ 0. Its graph is shown in figure B.4.

if

if

1

0

Figure B.4  The step function. For negative numbers it outputs 0, and for non-negative numbers it outputs 1.

458	 Appendix B I The math behind gradient descent

The model gives each point a score. The score that the model with weights (w
1
, w

2
, …, w

n
) and bias

b gives to the point x(i) = (x
1
(i), x

n
(i), …, x

n
(i)) is () ()

1
(, ,)

ni i
j jj

score w b x w x b
=

= +∑ . The predictions ŷ
i

are given by the following formula:

() ()

1

ˆ ((, ,))
n

i i
i j j

j

y step score w b x step w x b
=

 
= = +  

∑

In other words, the prediction is 1 if the score is positive, and 0 otherwise.
The perceptron error function is called PE(w, b, x, y), which we’ll abbreviate as PE. It was first

defined in the section “How to compare classifiers? The error function” in chapter 5. By con-
struction, it is a large number if the model made a bad prediction, and a small number (in this
case, actually 0) if the model made a good prediction. The error function is defined as follows.

•	 PE(w, b, x, y) = 0 if ŷ = y

•	 PE(w, b, x, y) = |score(w, b, x)| if ŷ ¹ y

In other words, if the point is correctly classified, the error is zero. If the point is incorrectly clas-
sified, the error is the absolute value of the score. Thus, misclassified points with scores of low
absolute value produce a low error, and misclassified points with scores of high absolute value
produce a high error. This is because the absolute value of the score of a point is proportional to
the distance between that point and the boundary. Thus, the points with low error are points
that are close to the boundary, whereas points with high error are far from the boundary.

To calculate the gradient ∇PE, we can use the same rule as before. One thing we should notice
is that the derivative of the absolute value function |x| is 1 when x ³ 0 and 0 when x < 0. This
derivative is undefined at 0, which is a problem with our calculations, but in practice, we can
arbitrarily define it as 1 without any problems.

In chapter 10, we introduced the ReLU(x) (rectified linear unit) function, which is 0 when x < 0
and x when x ³ 0. Notice that there are two ways in which a point can be misclassified:

•	 If y = 0 and ŷ = 1. This means score(w, b, x) ³ 0.

•	 If y = 1 and ŷ = 0. This means score(w, b, x) < 0.

Thus, we can conveniently rewrite the perceptron error as

1

((, ,)) (1) ((, ,)),
q

i i
i

PE y ReLU score w b x y ReLU score w b x
=

= − + −∑

or in more detail, as

() ()

1 1 1

(1) .
q n n

i i
i j j i j j

i j j

PE y ReLU w x b y ReLU w x b
= = =

= − − + −
   
      

+∑ ∑ ∑

	 Using gradient descent to train models� 459

Now we can proceed to calculate the gradient ∇PE using the chain rule. An important observa-
tion that we’ll use and that the reader can verify is that the derivative of ReLU(x) is the step func-
tion step(x). This gradient is

() () () ()

1 1 1

() (1) ,
q n n

i i i i
i j j j i j j j

i j jj

PE
y step w x b x y step w x b x

w = = =

   ∂
= − − − + − +   ∂    

∑ ∑ ∑

which we can rewrite as

() ()

1

((, ,)) (1) ((, ,)).
q

i i
i j i j

ij

PE
y x step score w b x y x step score w b x

w =

∂
= − − + −

∂ ∑

This looks complicated, but it’s actually not that hard. Let’s analyze each summand from the
right-hand side of the previous expression. Notice that step(score(w, b, x)) is 1 if and only if
score(w, b, x) > 0, and otherwise, it is 0. This is precisely when ŷ = 1. Similarly, step(–score(w, b, x))
is 1 if and only if score(w, b, x) < 0, and otherwise, it is 0. This is precisely when ŷ = 0. Therefore

•	 If ŷ
i
 = 0 and y

i
 = 0:

() ()((, ,)) (1) ((, ,)) 0i i
i j i jy x step score w b x y x step score w b x− − + − =

•	 If ŷ
i
 = 1 and y

i
 = 1:

() ()((, ,)) (1) ((, ,)) 0i i
i j i jy x step score w b x y x step score w b x− − + − =

•	 If ŷ
i
 = 0 and y

i
 = 1:

() () ()((, ,)) (1) ((, ,))i i i
i j i j jy x step score w b x y x step score w b x x− − + − =−

•	 If ŷ
i
 = 1 and y

i
 = 0:

() () ()((, ,)) (1) ((, ,))i i i
i j i j jy x step score w b x y x step score w b x x− − + − =

This means that when calculating
j

PE

w

∂
∂

, only the summands coming from misclassified points
will add value.

In a similar manner,

1

((, ,)) (1) ((, ,)).
q

i i
i

PE
y step score w b x y step score w b x

b =

∂
= − − + −

∂ ∑

Thus, the gradient descent step is defined as follows:

460	 Appendix B I The math behind gradient descent

Gradient descent step:

Replace (w, b) by (w', b'), where

•	
() ()

1

((, ,)) (1) ((, ,))
q

i i
j j i j i j

i

w w y x step score w b x y x step score w b xη
=

′ = + − − + −∑ , and

•	
1

((, ,)) (1) ((, ,))
q

i i
i

b b y step score w b x y step score w b xη
=

′ = + − − + −∑ .

And again, looking at the right-hand side of the previous expression

•	 If ŷ
i
 = 0 and y

i
 = 0:

()() () ()(), , 1 , , 0i iy step score w b x y step score w b x− − + − =

•	 If ŷ
i
 = 1 and y

i
 = 1:

()() () ()(), , 1 , , 0i iy step score w b x y step score w b x− − + − =

•	 If ŷ
i
 = 0 and y

i
 = 1:

()() () ()(), , 1 , , 1i iy step score w b x y step score w b x− − + − =−

•	 If ŷ
i
 = 1 and y

i
 = 0:

()() () ()(), , 1 , , 1i iy step score w b x y step score w b x− − + − =

This all may not mean very much, but one can code this to calculate all the entries of the gradient.
Notice again that if the mini-batch has size q = 1 and consists only of the point x = (x

1
, x

2
, …, x

n
)

with label y and prediction ŷ, then the step is defined as follows:

Gradient descent step:

•	 If the point is correctly classified, don’t change w and b.

•	 If the point has label y = 0 and is classified as ŷ = 1:

	– Replace w by w' = w – hx.

	– Replace b by b' = w – h.

•	 If the point has label y = 1 and is classified as ŷ = 0:

	– Replace w by w' = w + hx.

	– Replace b by b' = w + h.

Note that this is precisely the perceptron trick described in the section “The perceptron trick” in
chapter 5.

	 Using gradient descent to train models� 461

Training a logistic regression model using gradient descent to reduce the log loss

In this subsection, we’ll calculate the gradient of the log loss function and use it to apply gradient
descent and train a logistic regression model. In the logistic regression model, the predictions are
ŷ

1
, ŷ

2
, …, ŷ

q
 where each ŷ

i
 is some real number in between 0 and 1. To calculate the predictions,

we first need to remember the sigmoid function s(x), introduced in chapter 6. This function
takes as an input any real number x and outputs some number between 0 and 1. If x is a large
positive number, then s(x) is close to 1. If x is a large negative number, then s(x) is close to 0. The
formula for the sigmoid function is

1
() .

1 x
x

e
σ −=

+

The graph of s(x) is illustrated in figure B.5.
The predictions of the logistic regression model are precisely the output of the sigmoid func-

tion, namely, for i = 1, 2, …, q they are defined as follows:

() ()

1

ˆ ((, ,))
n

i i
i j j

j

y score w b x w x bσ σ
=

 
= = +  

∑

1

0

Figure B.5  The sigmoid function always outputs a number between 0 and 1. The output for negative numbers
is close to 0, and the output for positive numbers is close to 1.

The log loss is denoted as LL(w, b, x, y), which we’ll abbreviate as LL. This error function was first
defined in the section “The dataset and the predictions” in chapter 6. It is similar to the percep-
tron error function because by construction, it is a large number if the model made a bad predic-
tion and a small number if the model made a good prediction. The log loss function is defined as

1

ˆ ˆ() (1) (1).
q

i i i i
i

LL y log y y log y
=

=− + − −∑

We can proceed to calculate the gradient ∇LL using the chain rule. Before this, let’s note that
the derivative of the sigmoid function can be written as s'(x) = s(x)|1 – s(x)|. The details on

462	 Appendix B I The math behind gradient descent

the last calculation can be worked out using the quotient rule for differentiation, and they are
left to the reader. Using this, we can calculate the derivative of ŷ

i
 with respect to w

j
. Because

()()

1
ˆ ()

n i
i j jj

y w x bσ
=

= +∑ , then by the chain rule,

() ()

1 1

ˆ
() 1 () () (1) ().

n n
i ii

j j j j
j jj

y
w x b w x b xj i yi yi xj i

w
σ σ

= =

    ∂
= + − + = −    ∂      

∑ ∑

Now, on to develop the log loss. Using the chain rule again, we get

1

ˆ ˆ1 1
(1) .

ˆ ˆ1

q
i i

i i
ij i j i j

y yLL
y y

w y w y w=

∂ ∂∂ −
=− − −

∂ ∂ − ∂∑

And by the previous calculation for
ˆ

i

j

y

w

∂
∂ ,

() ()

1

1 1
ˆ ˆ ˆ ˆ(1) (1) (1) .

ˆ ˆ1

q
i i

i i i j i i i j
ij i i

LL
y y y x y y y x

w y y=

∂ −
= − + + − −

∂ −∑

Simplifying, we get

() ()

1

ˆ ˆ(1) (1) ,
q

i i
i i j i i j

ij

LL
y y x y y x

w =

∂
= − − + −

∂ ∑

which simplifies even more as

()

1

ˆ() .
q

i
i i j

ij

LL
y y x

w =

∂
= −

∂ ∑

Similarly, taking the derivative with respect to b, we get

1

ˆ().
q

i i
i

LL
y y

b =

∂
= −

∂ ∑

Therefore, the gradient descent step becomes the following:

	 Using gradient descent to train models� 463

Gradient descent step:

Replace (w, b) by (w', b'), where

•	
()

1

ˆ()
q

i
i i

i

w w y y xη
=

′ = + −∑ , and

•	
1

ˆ()
q

i i
i

b b y yη
=

′ = + −∑ .

Notice that when the mini-batches are of size 1, the gradient descent step becomes the following:

Replace (w, b) by (w', b'), where

•	
()ˆ() iw w y y xη′ = + − , and

•	 ˆ()b b y yη′ = + − .

This is precisely the logistic regression trick we learned in the section “How to find a good logis-
tic classifier?” in chapter 6.

Using gradient descent to train neural networks
In the section “Backpropagation” in chapter 10, we went over backpropagation—the process of
training a neural network. This process consists of repeating a gradient descent step to mini-
mize the log loss. In this subsection, we see how to actually calculate the derivatives to perform
this gradient descent step. We’ll perform this process in a neural network of depth 2 (one input
layer, one hidden layer, and one output layer), but the example is big enough to show how these
derivatives are calculated in general. Furthermore, we’ll apply gradient descent on the error for
only one point (in other words, we’ll do stochastic gradient descent). However, I encourage you
to work out the derivatives for a neural network of more layers, and using mini-batches of
points (mini-batch gradient descent).

In our neural network, the input layer consists of m input nodes, the hidden layer consists of
n hidden nodes, and the output layer consists of one output node. The notation in this subsec-
tion is different than in the other ones, for the sake of simplicity, as follows (and illustrated in
figure B.6):

•	 The input is the point with coordinates x
1
, x

2
, …, x

m
.

•	 The first hidden layer has weights V
ij
 and biases b

j
, for i = 1, 2, …, m and j = 1, 2, …, n.

•	 The second hidden layer has weights W
j
 for j = 1, 2, …, n, and bias c.

464	 Appendix B I The math behind gradient descent

Input

layer

Hidden

layer

Output

layer

Figure B.6  The process of calculating a prediction using a neural network with one hidden layer and sigmoid
activation functions

The way the output is calculated is via the following two equations:

•	 ()1

m

j i ij ji
h x V bσ

=
= +∑

•	 ()1
ˆ

n

j jj
y h W cσ

=
= +∑

To ease the calculation of the derivatives, we use the following helper variables r
j
 and s:

•	
1

m

j i ij ji
r x V b

=
= +∑

•	 h
j
 = s(r

j
)

•	
1

n

j jj
s h W c

=
= +∑

•	 ŷ = s(s)

In that way, we can calculate the following partial derivatives (recalling that the derivative of
the sigmoid function is s'(x) = s'(x)[1 – s(x)] and that the log loss is L(y, ŷ) = – y ln(ŷ) – (1 – y)
ln(1 – ŷ)—we’ll call it L for convenience):

1.	
ˆ1 1 ()

(1)
ˆ ˆ ˆ ˆ ˆ1 (1)

L y y
y y

y y y y y

∂ − − −
=− − − =

∂ − −

2.	
ˆ

()[1 ()] (1)
y

s s y y
s

σ σ
∂

= − = −
∂

	 Using gradient descent to train models� 465

3.	 , and 1j

j j

s s
h

W b

∂ ∂
= =

∂ ∂

4.	 j

j

s
W

h

∂
=

∂

5.	 ()[1 ()] (1)
j

j j

j

h
r r hj hj

r
σ σ

∂
= − = −

∂

6.	 and 1
j j

i

ij j

r r
x

V b

∂ ∂
= =

∂ ∂

To simplify our calculations, notice that if we multiply equations 1 and 2 and use the chain rule,
we get

7.	
ˆ ˆ()

ˆ ˆ ˆ(1) ().
ˆ ˆ ˆ(1)

L L y y y
y y y y

s y s y y

∂ ∂ ∂ − −
= = − =− −

∂ ∂ ∂ −

Now, we can use the chain rule and equations 3–7 to calculate the derivatives of the log loss with
respect to the weights and biases as follows:

8.	 ˆ() j

j j

L L s
y y h

W s W

∂ ∂ ∂
= =− −

∂ ∂ ∂

9.	 ˆ()
L L s

y y
c s c

∂ ∂ ∂
= =− −

∂ ∂ ∂

10.	 ˆ() (1)
j j

j j j i

ij j j ij

h rL L s
y y W h h x

V s h r V

∂ ∂∂ ∂ ∂
= =− − −

∂ ∂ ∂ ∂ ∂

11.	 ˆ() (1)
j j

j j j

j j j j

h rL L s
y y W h h

b s h r b

∂ ∂∂ ∂ ∂
= =− − −

∂ ∂ ∂ ∂ ∂

Using the previous equations, the gradient descent step is the following:

Gradient descent step for neural networks:

•	 Replace V
ij
 by ˆ() (1) .ij ij j j j i

ij

L
V V y y W h h x

V
η η

∂
− = + − −

∂

•	 Replace b
j
 by ˆ() (1).j j j j j

j

L
b b y y W h h

b
η η

∂
− = + − −

∂

•	 Replace W
j
 by ˆ() .j j j

j

L
W W y y h

W
η η

∂
+ = + −

∂

466	 Appendix B I The math behind gradient descent

•	 Replace c by ˆ().
L

c c y y
c

η η
∂

+ =+ −
∂

The previous equations are quite complicated, and so are the equations of backpropagation for
neural networks of even more layers. Thankfully, we can use PyTorch, TensorFlow, and Keras to
train neural networks without having to calculate all the derivatives.

Using gradient descent for regularization
In the section “Modifying the error function to solve our problem” in chapter 4, we learned reg-
ularization as a way to decrease overfitting in machine learning models. Regularization consists
of adding a regularization term to the error function, which helps reduce overfitting. This term
could be the L1 or the L2 norm of the polynomial used in the model. In the section “Techniques
for training neural networks” in chapter 10, we learned how to apply regularization to train neu-
ral networks by adding a similar regularization term. Later, in the section “Distance error func-
tion” in chapter 11, we learned the distance error function for SVMs, which ensured that the two
lines in the classifier stayed close to each other. The distance error function had the same form
of the L2 regularization term.

However, in the section “An intuitive way to see regularization” in chapter 4, we learned a
more intuitive way to see regularization. In short, every gradient descent step that uses regular-
ization is decreasing the values of the coefficients of the model by a slight amount. Let’s look at
the math behind this phenomenon.

For a model with weights w
1
, w

2
, …, w

n
, the regularization terms were the following:

•	 L1 regularization: W
1
 = |w

1
| + |w

2
| + … + |w

n
|

•	 L2 regularization: W
2
 = w

1
2 + w

2
2 + … + w

n
2

Recall that in order to not alter the coefficients too drastically, the regularization term is multi-
plied by a regularization parameter l. Thus, when we apply gradient descent, the coefficients are
modified as follows:

•	 L1 regularization: w
i
 is replaced by w

i
 – ∇W

1

•	 L2 regularization: w
i
 is replaced by w

i
 – ∇W

2

Where ∇ denotes the gradient of the regularization term. In other words, 1
1

1

(, ,) , , n
n

n

bb
b b

a a

 ∂∂
∇ … = … ∂ ∂ 

1
1

1

(, ,) , , n
n

n

bb
b b

a a

 ∂∂
∇ … = … ∂ ∂ 

. Since
| |

()i
i

i

w
sgn w

w

∂
=

∂
, and

2

2i
i

i

w
w

w

∂
=

∂
, then the gradient descent step is the

following:

	 Getting stuck on local minima: How it happens, and how we solve it� 467

Gradient descent step for regularization:

•	 L1 regularization: Replace a
i
 by ().i

i i i

i

a
a a sgn a

a
l l

∂
− = − ⋅

∂

•	 L2 regularization: Replace a
i
 by 2 (1 2) .i

i i i i

i

a
a a a a

a
l l l

∂
− =− =−

∂

Notice that this gradient descent step always reduces the absolute value of the coefficient a
i
. In L1

regularization, we are subtracting a small value from a
i
 if it is a

i
 positive and adding a small value if

it is negative. In L2 regularization, we are multiplying a
i
 by a number that is slightly smaller than 1.

Getting stuck on local minima: How it happens,
and how we solve it
As was mentioned at the beginning of this appendix, the gradient descent algorithm doesn’t nec-
essarily find the minimum value of the function. As an example, look at figure B.7. Let’s say that
we want to find the minimum of the function in this figure using gradient descent. Because the
first step in gradient descent is to start on a random point, we’ll start at the point labeled “Starting
point.”

Minimum

Starting
point

Figure B.7  We’re standing at the point labeled “Starting point.” The minimum value of the function is the point
labeled “Minimum.” Will we be able to reach this minimum using gradient descent?

Figure B.8 shows the path that the gradient descent algorithm will take to find the minimum.
Note that it succeeds in finding the closest local minimum to that point, but it completely misses
the global minimum on the right.

468	 Appendix B I The math behind gradient descent

Global minimum

Local minimum

Starting
point

Figure B.8  Unfortunately, gradient descent didn’t help us find the minimum value of this function. We did
manage to go down, but we got stuck at a local minimum (valley). How can we solve this problem?

How do we solve this problem? We can use many techniques to fix this, and in this section, we
learn a common one called random restart. The solution is to simply run the algorithm several
times, always starting at a different random point, and picking the minimum value that was
found overall. In figure B.9, we use random restart to find the global minimum on a function
(note that this function is defined only on the interval pictured, and thus, the lowest value in the
interval is indeed the global minimum). We have chosen three random starting points, one illus-
trated by a circle, one by a square, and one by a triangle. Notice that if we use gradient descent on
each of these three points, the square manages to find the global minimum of the function.

Starting
point 1

Starting
point 2

Starting
point 3

Found it!

Figure B.9  The random restart technique illustrated. The function is defined only on this interval, with three
valleys, and the global minimum located in the second valley. Here we run the gradient descent algorithm with
three different starting points: the circle, the square, and the triangle. Notice that the square managed to find
the global minimum of the function.

	 Getting stuck on local minima: How it happens, and how we solve it � 469

This method is still not guaranteed to find the global minimum, because we may be unlucky
and pick only points that get stuck in valleys. However, with enough random starting points,
we have a much higher chance of finding the global minimum. And even if we can’t find the
global minimum, we may still be able to find a good enough local minimum that will help us
train a good model.

471

Appendix
References C

These references can also be found in https://serrano.academy/grokking-machine-learning/.

General references
•	 GitHub repository: www.github.com/luisguiserrano/manning

•	 YouTube videos: www.youtube.com/c/LuisSerrano

•	 General information: https://serrano.academy

•	 Book information: https://serrano.academy/grokking-machine-learning

Courses
•	 Udacity machine learning nanodegree: http://mng.bz/4KE5

•	 Coursera machine learning course: https://www.coursera.org/learn/machine-learning

•	 Coursera machine learning specialization (University of Washington): http://mng.bz/Xryl

•	 End-to-end machine learning: https://end-to-end-machine-learning.teachable.com/courses

https://serrano.academy/grokking-machine-learning/
http://www.github.com/luisguiserrano/manning
http://www.youtube.com/c/LuisSerrano
https://serrano.academy
https://serrano.academy/grokking-machine-learning
http://mng.bz/4KE5
https://www.coursera.org/learn/machine-learning
http://mng.bz/Xryl
https://end-to-end-machine-learning.teachable.com/courses

472	 Appendix C I References

Blogs and YouTube channels
•	 Machine learning videos by Brandon Rohrer: https://www.youtube.com/user/

BrandonRohrer

•	 StatQuest with Josh Starmer: https://www.youtube.com/user/joshstarmer

•	 Chris Olah blog: https://colah.github.io/

•	 Jay Alammar blog: https://jalammar.github.io/

•	 Alexis Cook blog: https://alexisbcook.github.io/

•	 Dhruv Parthasarathy blog: https://medium.com/@dhruvp

•	 3Blue1Brown: http://youtube.com/c/3blue1brown

•	 Machine Learning Mastery: https://machinelearningmastery.com

•	 Andrej Karpathy blog: http://karpathy.github.io/

Books
•	 Pattern Recognition and Machine Learning, by Christopher Bishop: http://mng.bz/g1DZ

Chapter 1
Videos

•	 General machine learning videos: https://serrano.academy/general-machine-learning/

•	 A friendly introduction to machine learning video: www.youtube.com/
watch?v=IpGxLWOIZy4

•	 Monty Python spam sketch: www.youtube.com/watch?v=zLih-WQwBSc

Chapter 2
Videos

•	 Supervised machine learning videos: https://serrano.academy/linear-models/

•	 Unsupervised machine learning videos: https://serrano.academy/unsupervised-learning/

•	 Generative machine learning videos: https://serrano.academy/generative-models

https://www.youtube.com/user/BrandonRohrer
https://www.youtube.com/user/BrandonRohrer
https://www.youtube.com/user/joshstarmer
https://colah.github.io/
https://jalammar.github.io/
https://alexisbcook.github.io/
https://medium.com/@dhruvp
http://youtube.com/c/3blue1brown
https://machinelearningmastery.com
http://karpathy.github.io/
https://www.springer.com/gp/book/9780387310732
http://mng.bz/g1DZ
https://serrano.academy/general-machine-learning/
https://www.youtube.com/watch?v=IpGxLWOIZy4
https://www.youtube.com/watch?v=IpGxLWOIZy4
https://www.youtube.com/watch?v=zLih-WQwBSc
https://serrano.academy/linear-models/
https://serrano.academy/unsupervised-learning/
https://serrano.academy/generative-models

473	 Appendix C I References

•	 Reinforcement learning videos: https://serrano.academy/reinforcement-learning

•	 Deep learning videos: https://serrano.academy/neural-networks

Books
•	 Grokking Deep Reinforcement Learning, by Miguel Morales: http://mng.bz/5Zy4

Courses
•	 UCL course on reinforcement learning, by David Silver: https://www.davidsilver.uk/

teaching/

•	 Udacity Deep Reinforcement Learning Nanodegree Program: http://mng.bz/6mMG

Chapter 3
Code

•	 GitHub repository: http://mng.bz/o8lN

Datasets
•	 Hyderabad housing dataset:

	– Creator: Ruchi Bhatia

	– Date: 2020/08/27

	– Version: 4

	– Retrieved from http://mng.bz/nrdv

	– License: CC0: Public Domain

Videos
•	 Linear regression video: http://mng.bz/v4Rx

•	 Polynomial regression video: https://www.youtube.com/watch?v=HmmkA-EFaW0

Chapter 4
Code

•	 GitHub repository: http://mng.bz/4KXB

https://serrano.academy/reinforcement-learning
https://serrano.academy/neural-networks
https://www.manning.com/books/grokking-deep-reinforcement-learning
http://mng.bz/5Zy4
https://www.davidsilver.uk/teaching/
https://www.udacity.com/course/deep-reinforcement-learning-nanodegree--nd893
http://mng.bz/6mMG
https://github.com/luisguiserrano/manning/tree/master/Chapter_3_Linear_Regression
https://github.com/luisguiserrano/manning/tree/master/Chapter_3_Linear_Regression
http://mng.bz/o8lN
https://www.kaggle.com/ruchi798/housing-prices-in-metropolitan-areas-of-india
https://www.kaggle.com/ruchi798/housing-prices-in-metropolitan-areas-of-india
http://mng.bz/nrdv
https://www.youtube.com/watch?v=wYPUhge9w5c
https://www.youtube.com/watch?v=wYPUhge9w5c
http://mng.bz/v4Rx
https://www.youtube.com/watch?v=HmmkA-EFaW0
https://github.com/luisguiserrano/manning/tree/master/Chapter_4_Testing_Overfitting_Underfitting
https://github.com/luisguiserrano/manning/tree/master/Chapter_4_Testing_Overfitting_Underfitting
https://github.com/luisguiserrano/manning/tree/master/Chapter_4_Testing_Overfitting_Underfitting
http://mng.bz/4KXB

474	 Appendix C I References

Videos
•	 Machine learning: Testing and error metrics: https://www.youtube.com/

watch?v=aDW44NPhNw0

•	 Lasso (L1) regression (StatQuest): https://www.youtube.com/watch?v=NGf0voTMlcs

•	 Ridge (L2) regression (StatQuest): https://www.youtube.com/watch?v=Q81RR3yKn30

Chapter 5
Code

•	 GitHub repository: http://mng.bz/Qqpm

Videos
•	 Logistic regression and the perceptron algorithm video: https://www.youtube.com/

watch?v=jbluHIgBmBo

•	 Hidden Markov models video: https://www.youtube.com/watch?v=kqSzLo9fenk

Chapter 6
Code

•	 GitHub repository: http://mng.bz/Xr9Y

Datasets
•	 IMDB movie extensive reviews dataset

	– Creator: Stefano Leone

	– Date: 2019/11/24

	– Version: 2

	– Retrieved from https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset

	– License: CC0: Public Domain

https://www.youtube.com/watch?v=aDW44NPhNw0
https://www.youtube.com/watch?v=NGf0voTMlcs
https://www.youtube.com/watch?v=Q81RR3yKn30
https://github.com/luisguiserrano/manning/tree/master/Chapter_5_Perceptron_Algorithm
https://github.com/luisguiserrano/manning/tree/master/Chapter_5_Perceptron_Algorithm
https://github.com/luisguiserrano/manning/tree/master/Chapter_5_Perceptron_Algorithm
http://mng.bz/Qqpm
https://www.youtube.com/watch?v=jbluHIgBmBo
https://www.youtube.com/watch?v=kqSzLo9fenk
https://github.com/luisguiserrano/manning/tree/master/Chapter_6_Logistic_Regression
https://github.com/luisguiserrano/manning/tree/master/Chapter_6_Logistic_Regression
https://github.com/luisguiserrano/manning/tree/master/Chapter_6_Logistic_Regression
http://mng.bz/Xr9Y
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset

475	 Appendix C I References

Videos
•	 Logistic regression and the perceptron algorithm video: https://www.youtube.com/

watch?v=jbluHIgBmBo

•	 Cross entropy (StatQuest): https://www.youtube.com/watch?v=6ArSys5qHAU

•	 Cross entropy (Aurélien Géron): https://www.youtube.com/watch?v=ErfnhcEV1O8

Chapter 7
Videos

•	 Machine learning: Testing and error metrics: https://www.youtube.com/
watch?v=aDW44NPhNw0

Chapter 8
Code

•	 GitHub repository: http://mng.bz/yJRJ

Datasets
•	 Spam filter dataset

	– Creator: Karthik Veerakumar

	– Date: 2017/07/14

	– Version: 1

	– Retrieved from https://www.kaggle.com/karthickveerakumar/spam-filter

	– Visibility: Public

Videos
•	 Naive Bayes: https://www.youtube.com/watch?v=Q8l0Vip5YUw

https://www.youtube.com/watch?v=jbluHIgBmBo
https://www.youtube.com/watch?v=jbluHIgBmBo
https://www.youtube.com/watch?v=jbluHIgBmBo
https://www.youtube.com/watch?v=6ArSys5qHAU
https://www.youtube.com/watch?v=6ArSys5qHAU
https://www.youtube.com/watch?v=ErfnhcEV1O8
https://www.youtube.com/watch?v=aDW44NPhNw0
https://github.com/luisguiserrano/manning/tree/master/Chapter_8_Naive_Bayes
https://github.com/luisguiserrano/manning/tree/master/Chapter_8_Naive_Bayes
https://github.com/luisguiserrano/manning/tree/master/Chapter_8_Naive_Bayes
http://mng.bz/yJRJ
https://www.kaggle.com/karthickveerakumar/spam-filter
https://www.kaggle.com/karthickveerakumar/spam-filter
https://www.kaggle.com/karthickveerakumar/spam-filter
https://www.youtube.com/watch?v=Q8l0Vip5YUw
https://www.youtube.com/watch?v=Q8l0Vip5YUw
https://www.youtube.com/watch?v=Q8l0Vip5YUw
https://github.com/luisguiserrano/manning/tree/master/Chapter_9_Decision_Trees

476	 Appendix C I References

Chapter 9
Code

•	 GitHub repository: http://mng.bz/MvM2

Datasets
•	 Admissions dataset

	– Creator: Mohan S. Acharya

	– Date: 2018/03/03

	– Version: 2

	– Retrieved from http://mng.bz/aZlJ

	– Article: Mohan S. Acharya, Asfia Armaan, and Aneeta S Antony, “A Comparison of
Regression Models for Prediction of Graduate Admissions,” IEEE International
Conference on Computational Intelligence in Data Science (2019).

	– License: CC0: Public Domain

Videos
•	 Decision trees (StatQuest): https://www.youtube.com/watch?v=7VeUPuFGJHk

•	 Regression decision trees (StatQuest): https://www.youtube.com/watch?v=g9c66TUylZ4

•	 Decision trees (Brandon Rohrer): https://www.youtube.com/watch?v=9w16p4QmkAI

•	 Gini impurity index: https://www.youtube.com/watch?v=u4IxOk2ijSs

•	 Shannon entropy and information gain: https://www.youtube.com/watch?v=9r7FIXEAGvs

Blog posts
•	 Shannon entropy, information gain, and picking balls from buckets: http://mng.bz/g1lR

Chapter 10
Code

•	 GitHub repository: http://mng.bz/ePAJ

https://github.com/luisguiserrano/manning/tree/master/Chapter_9_Decision_Trees
https://github.com/luisguiserrano/manning/tree/master/Chapter_9_Decision_Trees
https://github.com/luisguiserrano/manning/tree/master/Chapter_9_Decision_Trees
http://mng.bz/MvM2
https://www.kaggle.com/mohansacharya/graduate-admissions?select=Admission_Predict.csv
https://www.kaggle.com/mohansacharya/graduate-admissions?select=Admission_Predict.csv
https://www.kaggle.com/mohansacharya/graduate-admissions?select=Admission_Predict.csv
http://mng.bz/aZlJ
https://www.youtube.com/watch?v=7VeUPuFGJHk
https://www.youtube.com/watch?v=7VeUPuFGJHk
https://www.youtube.com/watch?v=7VeUPuFGJHk
https://www.youtube.com/watch?v=g9c66TUylZ4
https://www.youtube.com/watch?v=g9c66TUylZ4
https://www.youtube.com/watch?v=9w16p4QmkAI
https://www.youtube.com/watch?v=9w16p4QmkAI
https://www.youtube.com/watch?v=u4IxOk2ijSs
https://www.youtube.com/watch?v=u4IxOk2ijSs
https://www.youtube.com/watch?v=9r7FIXEAGvs
https://www.youtube.com/watch?v=9r7FIXEAGvs
https://www.youtube.com/watch?v=9r7FIXEAGvs
https://medium.com/udacity/shannon-entropy-information-gain-and-picking-balls-from-buckets-5810d35d54b4
http://mng.bz/g1lR
https://github.com/luisguiserrano/manning/tree/master/Chapter_10_Neural_Networks
https://github.com/luisguiserrano/manning/tree/master/Chapter_10_Neural_Networks
https://github.com/luisguiserrano/manning/tree/master/Chapter_10_Neural_Networks
https://github.com/luisguiserrano/manning/tree/master/Chapter_10_Neural_Networks
http://mng.bz/ePAJ

477	 Appendix C I References

Datasets
•	 MNIST dataset. Deng, L. “The MNIST Database of Handwritten Digit images for

Machine Learning Research.” IEEE Signal Processing Magazine 29, no. 6 (2012): 141–42.
http://yann.lecun.com/exdb/mnist/

•	 Hyderabad housing dataset (see references for chapter 3)

Videos
•	 Deep learning and neural networks: https://www.youtube.com/watch?v=BR9h47Jtqyw

•	 Convolutional neural networks: https://www.youtube.com/watch?v=2-Ol7ZB0MmU

•	 Recurrent neural networks: https://www.youtube.com/watch?v=UNmqTiOnRfg

•	 How neural networks work (Brandon Rohrer): https://www.youtube.com/
watch?v=ILsA4nyG7I0

•	 Recurrent neural networks (RNN) and long short-term memory (LSTM) (Brandon
Rohrer): https://www.youtube.com/watch?v=WCUNPb-5EYI

Books
•	 Grokking Deep Learning, by Andrew Trask: https://www.manning.com/books/grokking

-deep-learning

•	 Deep Learning, by Ian Goodfellow, Yoshua Bengio, and Aaron Courville: https://www
.deeplearningbook.org/

Courses
•	 Udacity deep learning course: http://mng.bz/p9lP

Blog posts
•	 “Using Transfer Learning to Classify Images with Keras,” by Alexis Cook:

http://mng.bz/OQgP

•	 “Global Average Pooling Layers for Object Localization,” by Alexis Cook:
http://mng.bz/Ywj7

•	 “A Brief History of CNNs in Image Segmentation: From R-CNN to Mask R-CNN,” by
Dhruv Parthasarathy: http://mng.bz/GOnN

•	 “Neural networks, Manifolds, and Topology,” by Chris Olah: http://mng.bz/zERZ

•	 “Understanding LSTM Networks,” by Chris Olah: http://mng.bz/01nz

•	 “How GPT3 Works: Visualizations and Animations,” by Jay Alammar: http://mng.bz/KoXn

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.youtube.com/watch?v=BR9h47Jtqyw
https://www.youtube.com/watch?v=BR9h47Jtqyw
https://www.youtube.com/watch?v=BR9h47Jtqyw
https://www.youtube.com/watch?v=2-Ol7ZB0MmU
https://www.youtube.com/watch?v=2-Ol7ZB0MmU
https://www.youtube.com/watch?v=UNmqTiOnRfg
https://www.youtube.com/watch?v=UNmqTiOnRfg
https://www.youtube.com/watch?v=ILsA4nyG7I0
https://www.youtube.com/watch?v=ILsA4nyG7I0
https://www.youtube.com/watch?v=ILsA4nyG7I0
https://www.youtube.com/watch?v=WCUNPb-5EYI
https://www.youtube.com/watch?v=WCUNPb-5EYI
https://www.youtube.com/watch?v=WCUNPb-5EYI
https://www.manning.com/books/grokking-deep-learning
https://www.manning.com/books/grokking-deep-learning
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
http://mng.bz/p9lP
https://alexisbcook.github.io/2017/using-transfer-learning-to-classify-images-with-keras/
http://mng.bz/OQgP
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/
http://mng.bz/Ywj7
https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4?gi=baf5b651aa4f
https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4?gi=baf5b651aa4f
http://mng.bz/GOnN
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
http://mng.bz/zERZ
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://mng.bz/01nz
https://jalammar.github.io/how-gpt3-works-visualizations-animations/
https://jalammar.github.io/how-gpt3-works-visualizations-animations/
http://mng.bz/KoXn

478	 Appendix C I References

•	 “How to Configure the Learning Rate When Training Deep Learning Neural Networks,”
by Jason Brownlee: http://mng.bz/9ae8

•	 “Setting the Learning Rate of Your Neural Network,” by Jeremy Jordan: http://mng
.bz/WBKX

•	 “Selecting the Best Architecture for Artificial Neural Networks,” by Ahmed Gad:
http://mng.bz/WBKX

•	 “A Recipe for Training Neural Networks,” by Andrej Karpathy: http://mng.bz/80gg

Tools
•	 TensorFlow playground: https://playground.tensorflow.org/

Chapter 11
Code

•	 GitHub repository: http://mng.bz/ED6r

Videos
•	 Support vector machines: https://www.youtube.com/watch?v=Lpr__X8zuE8

•	 The polynomial kernel (StatQuest): https://www.youtube.com/watch?v=Toet3EiSFcM

•	 The radial (RBF) kernel (StatQuest): https://www.youtube.com/watch?v=Qc5IyLW_hns

Blog posts
•	 “Kernels and Feature Maps: Theory and Intuition,” by Xavier Bourret Sicotte:

http://mng.bz/N4aX

Chapter 12
Code

•	 GitHub repository: http://mng.bz/DK50

Videos
•	 Random forests (StatQuest): https://www.youtube.com/watch?v=J4Wdy0Wc_xQ

•	 AdaBoost (StatQuest): https://www.youtube.com/watch?v=LsK-xG1cLYA

https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks
http://mng.bz/9ae8
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
http://mng.bz/WBKX
http://mng.bz/WBKX
https://heartbeat.fritz.ai/selecting-the-best-architecture-for-artificial-neural-networks-7b051f775b4
http://mng.bz/WBKX
http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/
https://playground.tensorflow.org/
http://mng.bz/80gg
https://github.com/luisguiserrano/manning/tree/master/Chapter_11_Support_Vector_Machines
https://github.com/luisguiserrano/manning/tree/master/Chapter_11_Support_Vector_Machines
https://github.com/luisguiserrano/manning/tree/master/Chapter_11_Support_Vector_Machines
https://github.com/luisguiserrano/manning/tree/master/Chapter_11_Support_Vector_Machines
http://mng.bz/ED6r
https://www.youtube.com/watch?v=Toet3EiSFcM
https://www.youtube.com/watch?v=Qc5IyLW_hns
https://www.youtube.com/watch?v=Qc5IyLW_hns
https://xavierbourretsicotte.github.io/Kernel_feature_map.html
https://xavierbourretsicotte.github.io/Kernel_feature_map.html
http://mng.bz/N4aX
https://github.com/luisguiserrano/manning/tree/master/Chapter_12_Ensemble_Methods
https://github.com/luisguiserrano/manning/tree/master/Chapter_12_Ensemble_Methods
https://github.com/luisguiserrano/manning/tree/master/Chapter_12_Ensemble_Methods
https://github.com/luisguiserrano/manning/tree/master/Chapter_12_Ensemble_Methods
http://mng.bz/DK50
https://www.youtube.com/watch?v=LsK-xG1cLYA
https://www.youtube.com/watch?v=3CC4N4z3GJc

479	 Appendix C I References

•	 Gradient boosting (StatQuest): https://www.youtube.com/watch?v=3CC4N4z3GJc

•	 XGBoost (StatQuest): https://www.youtube.com/watch?v=OtD8wVaFm6E

Articles and blog posts
•	 “A Decision-Theoretic Generalization of Online Learning and an Application to

Boosting,” by Yoav Freund and Robert Shapire, Journal of Computer and System Sciences,
55, 119–139. http://mng.bz/l9Bz

•	 “Explaining AdaBoost,” by Robert Schapire: http://rob.schapire.net/papers/explaining
-adaboost.pdf

•	 “XGBoost: A Scalable Tree Boosting System,” by Tiani Chen and Carlos Guestrin.
KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August 2016, 785–794. https://doi.org/10.1145/
2939672.2939785

•	 “Winning the Netflix Prize: A Summary,” by Edwin Chen: http://mng.bz/B1jq

Chapter 13
Code

•	 GitHub repository: http://mng.bz/drlz

Datasets
•	 Titanic dataset:

	– Retrieved from https://www.kaggle.com/c/titanic/data

Graphics and image icons
Graphics and image icons were provided by the following creators from flaticon.com:

•	 IFC—hiker, mountain range: Freepik; flag: Good Ware

•	 Preface—musician: photo3idea_studio; mathematician: Freepik

•	 Figure 1.2—person: Eucalyp; computer: Freepik

•	 Figure 1.4—person: ultimatearm

•	 Figures 1.5, 1.6, 1.7, 1.8, 1.9—person on computer: Freepik

•	 Figures 2.1, 2.2, 2.3, 2.4—dog: Freepik; cat: Smashicons

https://www.youtube.com/watch?v=OtD8wVaFm6E
https://www.youtube.com/watch?v=OtD8wVaFm6E
http://mng.bz/l9Bz
http://rob.schapire.net/papers/explaining-adaboost.pdf
http://rob.schapire.net/papers/explaining-adaboost.pdf
http://rob.schapire.net/papers/explaining-adaboost.pdf
http://rob.schapire.net/papers/explaining-adaboost.pdf
https://doi.org/10.1145/2939672.2939785
https://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/
https://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/
https://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/
http://mng.bz/B1jq
https://github.com/luisguiserrano/manning/tree/master/Chapter_13_End_to_end_example
https://github.com/luisguiserrano/manning/tree/master/Chapter_13_End_to_end_example
https://github.com/luisguiserrano/manning/tree/master/Chapter_13_End_to_end_example
https://github.com/luisguiserrano/manning/tree/master/Chapter_13_End_to_end_example
http://mng.bz/drlz
https://www.kaggle.com/c/titanic/data
http://flaticon.com

480	 Appendix C I References

•	 Figures 2.2, 2.3, 2.4—factory: DinosoftLabs

•	 Figures 2.5, 2.6—envelope: Freepik

•	 Figure 2.7—house: Vectors Market

•	 Figure 2.8—map point: Freepik

•	 Figures 2.11, 2.12—robot, mountain: Freepik; dragon: Eucalyp; Treasure: Smashicons

•	 Figures 3.3, 3.4, 3.5—house: Vectors Market

•	 Figures 3.20, 3.21, 3.22—hiker, mountain range: Freepik; flag, bulb: Good Ware

•	 Figure 4.1—Godzilla: Freepik; swatter: Smashicons; fly: Eucalyp; bazooka: photo3idea_
studio

•	 Figure 4.6—house: Vectors Market; bandage, shingles: Freepik; titanium rod: Vitaly
Gorbachev

•	 Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.10, 5.11, 5.12, 5.13, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22,
5.23, 5.24, 6.1, 6.4, 6.5, 6.6, 10.2, 10.3—happy face, sad face, neutral face: Vectors Market

•	 Figures 5.15, 5.16—hiker: Freepik; bulb: Good Ware

•	 Figure 7.11 (in the exercises)—various animals: surang; book: Good Ware; clock,
strawberry, planet, soccer ball: Freepik; video: monkik

•	 Figure 8.4—chef hat: Vitaly Gorbachev; wheat, bread: Freepik

•	 Figures 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13—envelope: Smashicons

•	 Figures 9.6, 9.7, 9.8, 9.9, 9.12, 9.13, 9.15, 9.16, 9.17—atom: mavadee; beehive: Smashicons;
chess knight: Freepik

•	 Figures 9.13, 9.17—handbag: Gregor Cresnar

•	 Joke in chapter 10—arms with muscle: Freepik

•	 Joke in chapter 11—corn, chicken: Freepik; chicken: monkik

•	 Joke in chapter 12—shark, fish: Freepik

•	 Figure 12.1—big robot: photo3idea_studio; small robots: Freepik

•	 Joke in chapter 13—ship: Freepik

481

index

A
absolute error 61, 62, 154
absolute trick 55–56
accuracy

decision trees
with continuous features

260
with yes/no questions

243–244
examples of models 178–179
receiver operating

characteristic (ROC)
curve 189–200

AUC (area under the curve)
194–195

making decisions using
195–196

sensitivity and specificity
189–194, 198–200

testing 403
types of errors 179–188

choosing 189
confusion matrix

 182–183
false positives and

false negatives
180–182

F-score 186–189
precision 185–186
recall 183–184

Acharya, Mohan S. 476
activation functions 286,

297–298
AdaBoost 360–369

building weak learners
361–363

coding in Scikit-Learn
368–369

combining weak learners
into strong learner
363–366

combining classifiers 366
probability, odds, and log-

odds 364
AdaBoostClassifier package

368
Admissions dataset 475
AI (artificial intelligence) 3–4, 4
Alammar, Jay 472, 477
algorithms 7–13

clustering 23–25
examples of models that

humans use 8–12
examples of models that

machines use 12–13
linear regression 44–45

general linear regression
algorithm 59–60

overview 56
using in dataset 58
using model to make

predictions 59

alien planet example
classification 106

bias and y-intercept
119–120

classifiers, goal of 114
definition of perceptron

classifier 117–119
general classifier 114–115
slightly more complicated

planet 110–113
step function and activation

functions 116
neural networks 279–292

architecture of fully
connected neural
network 291–292

boundary of neural
network 289–291

combining outputs of
perceptrons into another
perceptron 283–285

graphical representation of
neural networks 287

graphical representation of
perceptrons 285–287

using two lines to classify
dataset 280–281

AND dataset 421
AND gate 420
AND operator 283, 332
Antony, Aneeta S. 476
apply() function 227

482	 index

app-recommendation system
241–256

asking best question 241–252
decision tree algorithm

255–256
hyperparameters 254–255
iterating 252–254
problem overview 240

architecture 299
Armaan, Asfia 476
artificial intelligence (AI) 3–4
AUC (area under the curve)

194–195

B
backpropagation 293–294
bagging 353, 360

fitting decision tree 356
fitting random forest manually

356–357
training random forest in Scikit-

Learn 358–359
batch gradient descent 67

logistic regression algorithm
 166

perceptron algorithm 137
batch vs. mini-batch vs. stochastic

gradient descent 299
Bayesian analysis 211
Bayesian learning 211
Bayesian statistics 211
Bayes’ theorem

finding posteriors with 228
implementing naive Bayes

algorithm 229–230
Bengio, Yoshua 477
Bhatia, Ruchi 473
bias 39, 113
binary trees 234
binning 398–399
Bishop, Christopher 472
boosting 353
branches, of decision nodes 235
Brief History of CNNs in

Image Segmentation, A
(Parthasarathy) 477

Brownlee, Jason 478

C
categorical cross-entropy 303
categorical data 20
chatbots 310
Chen, Edwin 479
Chen, Tiani 479
circular dataset 328–330, 346–347
classification 21–22, 104, 146, 150

alien planet problem 106
bias and y-intercept 119
classifiers, goal of 114
definition of perceptron

classifier 117–119
general classifier 114–115
slightly more complicated

planet 110–113
step function and activation

functions 116
applications of 142–143

computer vision 144
health care 143–145
recommendation systems 143
spam email filters 143

coding 137–142
overview 140–141
perceptron trick 139
using Turi Create 141–142

combining 366
error function 121–130, 318–320

comparing classifiers 121–129
mean perceptron error

126–129
perceptron algorithm 129–136

gradient descent 137
perceptron trick 129–133
pseudocode for 135–136
stochastic and batch gradient

descent 137
using gradient descent to train

models 457–462
to reduce log loss 461–463
to reduce perceptron error

457–460
classification model 20
classifiers 104
clustering algorithms 23–25
CNN (convolutional neural

networks) 309–310

coding
kernel method 346–350

polynomial kernel to classify
circular dataset 346

radial basis function (RBF)
kernel 347–349

logistic regression algorithm 166
perceptron algorithm 137–142

coding perceptron trick 139
overview 140–141
using Turi Create 141

Comparison of Regression Models
for Prediction of Graduate
Admissions, A (Acharya,
Armaan, and Antony) 476

compile function 303
computer vision 144
conditional probability 206
confusion matrix 182–183
continuous features 258–260, 260
continuous perceptrons 149
convolutional neural networks

(CNN) 309–310
Cook, Alexis 472, 477
coronavirus dataset 179
cost functions 61
Courville, Aaron 477
C parameter

in Scikit-Learn 326
overview 323–324

create function 68, 97, 142, 172
criterion hyperparameter 265
cross-entropy 158
cross-validation 407
CSV (comma-separated values) 389

D
data 4, 17–18, 393

defined 17–18
features 17
labeled and unlabeled data 17–18
labels 17
linear regression 57
predictions 17

data engineering
feature engineering 395–400

binning 398–399

	 index� 483

feature selection 399–400
one-hot encoding 396–398

grid search 405–407
missing values 392–394

dropping columns with
missing data 393

filling in missing data 394
Titanic dataset 388–392

features of 389
loading with Pandas 389–390
studying with Pandas 391–392

training models 400–404
evaluating models 402–404
several models on dataset

 402
splitting data 401
testing model 404

using k-fold cross-validation
408–409

DataFrame object 390
DBSCAN (density-based spatial

clustering) 25
decision node 235
decision stumps 234
Decision-Theoretic Generalization

of Online Learning and an
Application to Boosting, A
(Freund and Shapire) 479

DecisionTreeClassifier object 263
DecisionTree object 264
DecisionTreeRegressor object 271
decision trees 235

applications 272–273
health care 272

app-recommendation system
241–256

asking best question 241–252
decision tree algorithm

255–256
hyperparameters 254–255
iterating 252–254
problem overview 240–241

fitting 356
for regression 268–271
gradient boosting 370–374
graphical boundary of 261–264
modeling student admissions

with Scikit-Learn 264–267
splitting data with more classes

257–260

using continuous features
258–260

using non-binary categorical
features 257

deep learning (DL) 5, 5–6, 278
Deep Learning (Goodfellow,

Bengio, and Courville) 477
degree 70
degree parameter 346
density-based spatial clustering

(DBSCAN) algorithm 25
depth, of decision trees 235
dimension 26
dimensionality reduction 25–26
direction 48
discrete perceptron 149
display_tree function 263
distance

comparing classifiers 123–125
error function 320–321

DL (deep learning) 5, 5–6, 278
drop function 393
dropout 296

E
email dataset

false positives and false negatives
182

overview 179
email spam-detection model 20
ensemble learning

AdaBoost 360–369
building weak learners

361–363
coding in Scikit-Learn

368–369
combining weak learners into

strong learner 363–366
analogy 352–353
applications of ensemble methods

384
bagging 354–355

fitting decision tree 356
fitting random forest manually

356–357
training random forest in

Scikit-Learn 358–359

gradient boosting 370–374
XGBoost 375–384

building weak learners
376–379

making predictions 380–381
similarity score 375–376
training model in Python

382–384
tree pruning 379–380

entropy 248, 250
epochs 56
error functions 60–67, 121–130

absolute error 61
comparing classifiers 121–129

distance 123–125
number of errors 121–123
score 125–126

gradient descent 63–66
lasso regression and ridge

regression 90–91
logistic classifiers 154

absolute error 154
log loss 155
square error 155

mean absolute and (root) mean
square errors 63–65

mean perceptron error 126–129
measuring neural networks

293
of SVMs (support vector

machines) 318–324
classification error function

318–320
C parameter 323–324
distance error function

320–321
plotting 66–67
square error 62
stochastic and batch gradient

descent 67
error types 179–188

choosing 189
confusion matrix 182–183
false positives and false negatives

180–182
F-score 186–189

calculating 187
calculating Fb-score 187–189

precision 185–186
recall 183–184

484	 index

events 210–211
Explaining AdaBoost (Schapire)

479

F
F1-score 186–187, 403, 404
f1_score function 403
false negatives 180–182
false positives 180–182
feature engineering 395–400

binning 398–399
feature selection 399–400
one-hot encoding 396–398

feature maps 327
features 11, 38, 265, 325, 358,

401
fillna function 394
fit function 263, 265, 402
formulas 3
formulate 8
Freund, Yoav 479
F-score 186–189

calculating 187
calculating Fb-score 187–188

G
Gad, Ahmed 478
games 31
gamma parameter 344–345
GANs (generative adversarial

networks) 29, 311
gated recurrent units (GRU)

310–311
Gaussian mixture models 25
general linear regression algorithm

59–60
generative machine learning 29,

311
genetics 25
get_dummies function 397
Gini impurity index 245, 260
Global Average Pooling Layers for

Object Localization (Cook)
477

Goodfellow, Ian 477
gradient boosting 375–384

building weak learners 376
making predictions 380–381
training an XGBoost model in

Python 382–384
tree pruning 379–380
using decision trees to build

strong learners 370–374
XGBoost similarity score

375–376
GradientBoostingRegressor

package 373
gradient descent 63–66, 449–452

decreasing functions 450–451
for regularization 466–467
local minima 467–469
perceptron algorithm 137
training models 452–466

classification models
457–462

linear regression models
454–458

neural networks 463–466
graphical boundary 261–264
grid search 255, 405–407
GridSearchCV 407
grid world example 30–31
Grokking Deep Learning (Trask)

309, 477
Grokking Deep Reinforcement

Learning (Morales) 473
GRU (gated recurrent units)

310–311
Guestrin, Carlos 479

H
ham 8
health care applications

classification 143–145
decision trees 272
regression 72

hierarchical clustering 25
high precision models 186
high recall models 184
high sensitivity 190
high specificity 190

HMM (hidden Markov models)
105

housing prices model 20
housing regression model 20

formulate step 40–41
multivariate linear regression

42–43
predicting price of house 37–43
predict step 42
remember step 39–40
using Turi Create 67–69

How GPT3 Works (Alammar)
477

How to Configure the Learning
Rate When Training Deep
Learning Neural Networks
(Brownlee) 477

Hyderabad housing dataset 473
hyperparameters

decision trees 254–255
defined 71–72
grid search 405–407
setting in Scikit-Learn 266–268
training neural networks

299

I
if statement 140
image recognition 305, 309

building and training model
306–307

evaluating model 307
loading data 305
preprocessing data 305–306

IMDB movie extensive reviews
dataset 474

index column 172
information gain 252
intersections 216
is_na function 393
iterating 252–254

J
Jordan, Jeremy 478

	 index� 485

K
Karpathy, Andrej 472, 478
Keras 299–307

graphical example in two
dimensions 300–305

architecture of neural network
301

building model in Keras
302–303

training model 303–305
turning nonbinary features

into binary ones 301
training neural network for

image recognition
305–307

building and training model
306–307

evaluating model 307
loading data 305
preprocessing data

305–306
kernel method 326–349

coding 346–350
polynomial kernel to

classify circular dataset
346–347

radial basis function (RBF)
kernel 347

polynomial kernel 328–334
AND operator on

recommendation system
332–333

circular dataset 328–330
going beyond quadratic

equations 333–334
radial basis function (RBF)

kernel 334–339
functions of 337–339
similarity 339
training SVM with

340–345
kernel parameter 346
Kernels and Feature Maps (Sicotte)

478
k-fold cross-validation

408–409
K-means clustering 25

L
L1 and L2 norm

in coefficients of model 92–93
measuring model complexity

89–90
l1_penalty parameter 97
l2_penalty parameter 97
labeled data 18–22

classification models 21–22
regression models 20–21

labels 39, 265, 325, 358, 401
lambda 92
lambda parameter 382
lasso regression 90–91
leaf node 235
learner 352
learning rate 53, 299, 382, 450
learning_rate hyperparameter 373
leaves 234
len function 391
Leone, Stefano 474
linear equation 41
linear regression

absolute trick 55–56
algorithm 44–60

general linear regression
algorithm 59–60

overview 56–57
using in dataset 58–59
using model to make

predictions 59
applications of regression 72
error function 60–67

absolute error 61
gradient descent 63–66
mean absolute and (root) mean

square errors 63–65
plotting 66–67
square error 62
stochastic and batch gradient

descent 67
housing regression model

formulate step 40–41
multivariate linear regression

42–43
predicting price of house

37–43
predict step 42

remember step 39–40
using Turi Create 67–69

loading data and plotting it 57
parameters and hyperparameters

71–72
polynomial regression

fitting polynomial curve 71
polynomials 69–70

simple trick 49–52
slope and y-intercept 47–49
square trick 52–56
using gradient descent to train

models 454–458
reducing mean absolute error

454–456
reducing mean square error

456–457
linear_regression package 68
local minima 467–469
location 48
logistic_classifier object 142
logistic_classifier package 172
logistic classifiers

classifying IMDB reviews with
Turi Create 171

comparing classifiers using log
loss 158

logistic classifier 1 158
logistic classifier 2 159

dataset and predictions 152
error functions 154

absolute error 154
log loss 155
square error 155

logistic regression algorithm 160
coding 166
logistic trick 160
pseudocode for 165
stochastic, mini-batch, and

batch gradient descent 166
sigmoid function 150
softmax function 173

LogisticRegression 402
logistic regression algorithm 150
logistic trick 160
log loss

comparing classifiers using 158
logistic classifier 1 158
logistic classifier 2 159

formula for 158

486	 index

log loss (continued)
overview 155
using gradient descent 461–463

log-odds 364
loss functions 61
lower() function 227
LSTM (long short-term memory

networks) 105, 310–311

M
machine learning

AI (artificial intelligence) 3–4
background needed for 2–3
deep learning 5–6
defined 4–5
remember-formulate-predict

framework 6–13
housing regression model

37–38
how humans think 6–7
models and algorithms 7–8

types of
data 17–18
reinforcement learning 29–31
supervised learning with

labeled data 18–22
unsupervised learning with

unlabeled data 22–25
machine translation 310
MAE (mean absolute value) 418
market segmentation 25
matrix factorization 29
max_depth hyperparameter 266,

358
max_features hyperparameter 266
maximum depth 382
mean absolute errors 63, 454–456
mean perceptron error 126
mean square error (MSE) 63–65,

269, 456
medical dataset 179
medical imaging 25
mini-batch gradient descent 67,

137, 166
mini-batch learning 67
minimizing functions 63
min_impurity_decrease

hyperparameter 266

min_impurity_split
hyperparameter 266

minimum split loss 382
min_samples_leaf hyperparameter

266
min_samples_split hyperparameter

266
missing values 392–394

dropping columns with missing
data 393

filling in missing data 394
MNIST (Modified National

Institute of Standards and
Technology) dataset 300

model complexity graph 85–86
models 7–8, 39

classification models 21–22
examples of models that humans

use 8–12
examples of models that

machines use 12
regression models 20–21

Morales, Miguel 473
MSE (mean square error) 63–65,

269, 456
multilayer perceptrons 278
multivariate linear regression

42–43
music recommendations 72

N
naive Bayes model 206, 232

example of sick or healthy
207–211

spam-detection model 212–226
building with real data

226–230
finding posterior 213–214
finding prior 212
turning ratios into

probabilities 214–219
NAND gate 443
negative zone 109
n_estimators hyperparameter 358
neural networks 5

alien planet example 279–281
architecture of fully connected

neural network 291–292

boundary of neural network
289–291

combining outputs of
perceptrons into another
perceptron 283–285

graphical representation of
neural networks 287

graphical representation of
perceptrons 285–287

using two lines to classify
dataset 280–282

architectures for complex
datasets 309–311

convolutional neural networks
(CNN) 309–310

generative adversarial
networks (GAN) 311

RNN, GRU, LSTM 310–311
coding in Keras 299–307

graphical example in two
dimensions 300–305

training neural network for
image recognition 305–307

for regression 308–309
training 292–299

activation functions 297–298
backpropagation 293–294
error function 293
hyperparameters 299
problems, overfitting and

vanishing gradients
294–295

softmax function 298–299
techniques for 295–299

with gradient descent 463–466
Neural networks, Manifolds, and

Topology (Olah) 477
nodes 234
non-binary categorical features 257
NOR gate 442
numerical data 20

O
odds 364
Olah, Chris 472, 477
one-hot encoding 257, 396–398
operator theory 327
OR dataset 422

	 index� 487

OR gate 420
overfitting 78, 101

example using polynomial
regression 79–81

model complexity graph 85–86
polynomial regression, testing,

and regularization with Turi
Create 95–100

reducing by tree pruning
379–380

regularization 86–95
effects of L1 and L2

regularization in coefficients
of model 92–93

example of overfitting 88–89
intuitive way to see

regularization 93
L1 and L2 norm 89–90
lasso regression and ridge

regression 90–91
regularization parameter

91–92
testing model 81–84

picking testing set 83
using testing data for training

model 83–84
training neural networks

294–295
validation set 84

oversimplification 78

P
Pandas

loading dataset 389–390
studying dataset 391–392

parameters 71–72
Parthasarathy, Dhruv 472, 477
Pattern Recognition and Machine

Learning (Bishop) 472
perceptron 104
perceptron algorithm 105
perceptron classifier 104
perceptron error function 125
perceptron model 104
perceptrons

algorithm 129–136
gradient descent 137

perceptron trick 129–133
pseudocode for 135–136
stochastic and batch gradient

descent 137
architecture of fully connected

neural network 291–292
boundary of neural network

289–291
combining outputs of into other

perceptron 283–285
career happiness classifier 283
family happiness classifier 284
happiness classifier 285

graphical representation of
285–287

graphical representation of
neural networks 287

using gradient descent 457–460
using two lines to classify dataset

281–282
perceptron trick 105
plotting

error function 66–67
linear regression data 57

polynomial kernel 328, 334
AND operator on

recommendation system
332–333

circular dataset 328–330
going beyond quadratic

equations 333–334
polynomial regression 69, 79–80
positive zone 109
posteriors

defined 210–211
spam-detection model 213–214
with Bayes’ theorem 228

precision 403, 427
F-score 186–189

calculating 187
calculating Fb-score 187–189

overview 185–186
specificity and 198–200

predicted positive 425
predict function 266, 403
prediction 8, 39, 286
predictions column 173
priors 228

defined 210–211
spam-detection model 212

probability 214–219, 364
product recommendations 72
product rule for independent

probabilities 220
pseudocode

for backpropagation algorithm
293–294

for logistic regression algorithm
165

for perceptron algorithm
135–136

for perceptron trick 133
algebraic 130–132
geometric 129

R
RandomForestClassifier package

358
random forests 354
random package 57
random restart 468
random_state 401
ratios 214–219
RBF (radial basis function) kernel

328, 339, 405
functions of 337–339
similarity 339
training SVM with 340–345

RBMs (restricted Boltzmann
machines) 29

recall 402, 427
F-score 186–189

calculating 187
calculating Fb-score 187–188

overview 183–184
sensitivity and 198–200

Recipe for Training Neural
Networks, A (Karpathy) 478

recommendation systems
AND operator on 332–333
classification 143
decision trees 272–273
regression 72

regression 150
for decision trees 268–271
models 20–21
neural networks for 308–309

488	 index

regression model 20
regularization 86–95

effects of L1 and L2
regularization 92–93

example of overfitting 88–89
for training neural networks

295–296
gradient descent for 466–467
intuitive way to see

regularization 93–95
L1 and L2 norm 89–90
lasso regression and ridge

regression 90–91
regularization parameter 91–92

regularization parameters 91–92,
299

reinforcement learning 29–31
ReLU (rectified linear unit) 297,

297–298
remember-formulate-predict

framework 6–13
how humans think 6–7
models and algorithms 7–13

examples of models that
humans use 8–12

examples of models that
machines use 12

rescaling factor 361
research experience 265
ridge regression 90–91
RMSE (root mean square error)

63, 98
RNN (recurrent neural networks)

105, 310–311
robotics 31
ROC (receiver operating

characteristic) curve
189–192

AUC (area under the curve)
194–195

making decisions using
195–198

recall and precision 198–200
sensitivity and specificity

189–190
Rohrer, Brandon 472, 477
root node 234
rule of complementary probabilities

215

S
Schapire, Robert 479
Scikit-Learn

building decision tree with 263
coding AdaBoost in 368–369
coding SVMs in 324–326

C parameter 326
simple SVM 324

modeling student admissions
with 264–267

training random forest in
358–359

score 125–126, 458
score function 266, 403
Selecting the Best Architecture for

Artificial Neural Networks
(Gad) 477

self-driving cars 31
semantic segmentation 310
sensitivity 189–194

calculating 191
optimizing in model 191–194

sentiment analysis 21, 104
sentiment analysis classifier

281–282
sentiment column 172
Series object 390
Setting the Learning Rate of Your

Neural Network (Jordan)
478

Shapire, Robert 479
Sicotte, Xavier Bourret 478
sigmoid function 150
Silver, David 473
similarity 339
similarity score 375
simple trick 49–50
simplifying data

dimensionality reduction 25–26
matrix factorization and singular

value decomposition 27–29
singular value decomposition

27–29, 29
slope 40, 49
social media 21
softmax function 173, 298–299
spam email

dataset 179
filters 143

naive Bayes model 212–226
building with real data

226–230
finding posterior 213–214
finding prior 212–213
turning ratios into

probabilities 214–219
Spam filter dataset 475
specificity 189–194

calculating 191
optimizing in model 191–194

speech recognition 310
split() function 227
splitting data 257–260

into features and labels, and
training and validation 401

using continuous features
258–260

using non-binary categorical
features 257

square error 61, 63–65, 155
square trick 52–56
Starmer, Josh 472
stochastic gradient descent 67

logistic regression algorithm 166
perceptron algorithm 137

sum function 392
sum rule for disjoint probabilities

245
supervised learning 18–22

classification models 21–22
regression models 20–21

SVMs (support vector machines)
coding in Scikit-Learn 324–326

coding simple SVM 324–325
C parameter 326

kernel method 326–349
coding 346–350
polynomial kernel 328–334
radial basis function (RBF)

kernel 334–339
using error function to build

better classifiers 318–324
adding two error functions

to obtain error function
322–323

classification error function
318–320

C parameter 323–324
distance error function

320–321

	 index� 489

T
tanh (hyperbolic tangent) function

297
testing error 82
testing models 81–84, 402–404

accuracy 403
F1-score 403–404
picking testing set 83
using testing data for training

model 83–84
testing set 81
text_analytics package 171
text summarization 310
threshold 120
Titanic dataset 388–392

features of 389
loading with Pandas 389–390
studying with Pandas 391–392

training error 82
training models

data engineering 400–404
evaluating models 402–404
several models on dataset 402
splitting data into features

and labels, and training and
validation 401

testing model 404
with gradient descent 452–466

classification models 457–462
linear regression models

454–458
neural networks 463–466

training neural networks 292–299
activation functions 297–298
backpropagation 293–294
error function 293
hyperparameters 299
problems, overfitting and

vanishing gradients
294–295

softmax function 298
techniques for 295–296

dropout 296
regularization 295

training set 81
train_test_split function 401
transfer learning 310
Trask, Andrew 309, 477
Turi Create 67–69

classifying IMDB reviews with
171

coding perceptron algorithm
141–142

polynomial regression, testing,
and regularization with
95–96

U
underfitting 78, 101

example using polynomial
regression 79–81

model complexity graph 85–86
polynomial regression, testing,

and regularization with Turi
Create 95–100

regularization 86–95
effects of L1 and L2

regularization in coefficients
of model 92–93

example of overfitting 88–89
intuitive way to see

regularization 93–95
L1 and L2 norm 89–90
lasso regression and ridge

regression 90–91
regularization parameter

91–92
testing model 81–84

picking testing set 83
using testing data for training

model 83–84
validation set 84

Understanding LSTM Networks
(Olah) 477

unlabeled data 22–25
clustering algorithms 23–25
dimensionality reduction 25–26

generative machine learning 29
matrix factorization and singular

value decomposition 27–28
unsupervised learning 22–25

clustering algorithms 23–25
dimensionality reduction 25–26
generative machine learning 29
matrix factorization and

singular value
decomposition 27–29

Using Ttransfer Learning to
Classify Images with Keras
(Cook) 477

V
validation set 84
Veerakumar, Karthik 475

W
weak learners 353
website traffic 21
weights 39, 113
Winning the Netflix Prize (Chen)

479

X
XGBoost (extreme gradient

boosting) 375, 384, 479
building weak learners

376–379
making predictions 380–381
similarity score 375–376
training model in Python

382–384
tree prunings 379–380

xgboost package 383
XGBRegressor model 382
XOR dataset 332, 422

Hands-on projects for learning your way

liveProjects are an exciting way to develop your skills that’s just like learning on-the-job.

In a Manning liveProject you tackle a real-world IT challenge and work out your own

solutions. To make sure you succeed, you’ll get 90 days full and unlimited access to a

hand-picked list of Manning book and video resources.

Here’s how liveProject works:

• Achievable milestones. Each project is broken down into steps and sections so

you can keep track of your progress.

• Collaboration and advice. Work with other liveProject participants through

chat, working groups, and peer project reviews.

• Compare your results. See how your work shapes up against an expert

implementation by the liveProject’s creator.

• Everything you need to succeed. Datasets and carefully selected learning

resources come bundled with every liveProject.

• Build your portfolio. All liveProjects teach skills that are in-demand from

industry. When you’re fi nished, you’ll have the satisfaction that comes with

success and a real project to add to your portfolio.

Explore dozens of data, development, and cloud engineering
liveProjects at www.manning.com!

D iscover powerful machine learning techniques you
can understand and apply using only high school
math! Put simply, machine learning is a set of tech-

niques for data analysis based on algorithms that deliver better
results as you give them more data. ML powers many cutting-
edge technologies, such as recommendation systems, facial
recognition software, smart speakers, and even self-driving cars.
This unique book introduces the core concepts of machine
learning, using relatable examples, engaging exercises, and
crisp illustrations.

Grokking Machine Learning presents machine learning algo-
rithms and techniques in a way that anyone can understand.
This book skips the confused academic jargon and offers clear
explanations that require only basic algebra. As you go, you’ll
build interesting projects with Python, including models for
spam detection and image recognition. You’ll also pick up
practical skills for cleaning and preparing data.

What’s Inside

• Supervised algorithms for classifying and splitting data
• Methods for cleaning and simplifying data
• Machine learning packages and tools
• Neural networks and ensemble methods for complex datasets

For readers who know basic Python. No machine learning
knowledge necessary.

Luis G. Serrano is a research scientist in quantum artifi cial
intelligence. Previously, he was a Machine Learning Engineer
at Google and Lead Artifi cial Intelligence Educator at Apple.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

grokking
Machine Learning
Luis G. Serrano
Foreword by Sebastian Th run

“Did you think machine learn-
ing is complicated and hard
to master? It’s not! Read this
book! Serrano demystifi es
some of the best-held secrets of
the machine learning society.”

—Sebastian Thrun, Founder,
Udacity

“The fi rst step to take on your
machine learning journey.”

 —Millad Dagdoni, Norwegian
 Labour and Welfare
 Administration

“A nicely written guided intro-
duction, especially for those
who want to code but feel
shaky in their mathematics.”

 —Erik D. Sapper, California
 Polytechnic State University

“The most approachable intro-
duction to machine learning
I’ve had the pleasure to read
in recent years.
Highly recommended.”

 —Kay Engelhardt, devstats

MANNING $59.99 | Can $79.99 (including eBook)

Free eBook

DATA SCIENCE/MACHINE LEARNING

See fi rst page

ISBN: 978-1-61729-591-1

	Machine Learning
	contents
	foreword
	preface
	acknowledgments
	about this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	1 What is machine learning? It is common sense, except done by a computer
	I am super happy to join you in your learning journey!
	Machine learning is everywhere
	Do I need a heavy math and coding background to understand machine learning?
	Formulas and code are fun when seen as a language

	OK, so what exactly is machine learning?
	What is artificial intelligence?
	What is machine learning?
	And now that we’re at it, what is deep learning?

	How do we get machines to make decisions with data? The remember-formulate-predict framework
	How do humans think?
	Some machine learning lingo-models and algorithms
	Some examples of models that humans use
	Some examples of models that machines use

	Summary

	2 Types of machine learning
	What is the difference between labeled and unlabeled data?
	What is data?
	And what are features?
	Labels?
	Predictions
	Labeled and unlabeled data

	Supervised learning: The branch of machine learning that works with labeled data
	Regression models predict numbers
	Classification models predict a state

	Unsupervised learning: The branch of machine learning that works with unlabeled data
	Clustering algorithms split a dataset into similar groups
	Dimensionality reduction simplifies data without losing too much information
	Other ways of simplifying our data: Matrix factorization and singular value decomposition
	Generative machine learning

	What is reinforcement learning?
	Summary
	Exercises

	3 Drawing a line close to our points: Linear regression
	The problem: We need to predict the price of a house
	The solution: Building a regression model for housing prices
	The remember step: Looking at the prices of existing houses
	The formulate step: Formulating a rule that estimates the price of the house
	The predict step: What do we do when a new house comes on the market?
	What if we have more variables? Multivariate linear regression
	Some questions that arise and some quick answers

	How to get the computer to draw this line: The linear regression algorithm
	Crash course on slope and y-intercept
	A simple trick to move a line closer to a set of points, one point at a time
	The square trick: A much more clever way of moving our line closer to one of the points
	The absolute trick: Another useful trick to move the line closer to the points
	The linear regression algorithm: Repeating the absolute or square trick many times to move the line
	Loading our data and plotting it
	Using the linear regression algorithm in our dataset
	Using the model to make predictions
	The general linear regression algorithm (optional)

	How do we measure our results? The error function
	The absolute error: A metric that tells us how good our model is by adding distances
	The square error: A metric that tells us how good our model is by adding squares of distances
	Mean absolute and (root) mean square errors are more common in real life
	Gradient descent: How to decrease an error function by slowly descending from a mountain
	Plotting the error function and knowing when to stop running the algorithm
	Do we train using one point at a time or many? Stochastic and batch gradient descent

	Real-life application: Using Turi Create to predict housing prices in India
	What if the data is not in a line? Polynomial regression
	A special kind of curved functions: Polynomials
	Nonlinear data? No problem: Let’s try to fit a polynomial curve to it

	Parameters and hyperparameters
	Applications of regression
	Recommendation systems
	Video and music recommendations
	Product recommendations
	Health care

	Summary
	Exercises

	4 Optimizing the training process: Underfitting, overfitting, testing, and regularization
	An example of underfitting and overfitting using polynomial regression
	How do we get the computer to pick the right model? By testing
	How do we pick the testing set, and how big should it be?
	Can we use our testing data for training the model? No.

	Where did we break the golden rule, and how do we fix it? The validation set
	A numerical way to decide how complex our model should be: The model complexity graph
	Another alternative to avoiding overfitting: Regularization
	Another example of overfitting: Movie recommendations
	Measuring how complex a model is: L1 and L2 norm
	Modifying the error function to solve our problem: Lasso regression and ridge regression
	Regulating the amount of performance and complexity in our model: The regularization parameter
	Effects of L1 and L2 regularization in the coefficients of the model
	An intuitive way to see regularization

	Polynomial regression, testing, and regularization with Turi Create
	Summary
	Exercises

	5 Using lines to split our points: The perceptron algorithm
	The problem: We are on an alien planet, and we don’t know their language!
	A slightly more complicated planet
	Does our classifier need to be correct all the time? No
	A more general classifier and a slightly different way to define lines
	The step function and activation functions: A condensed way to get predictions
	What happens if I have more than two words? General definition of the perceptron classifier
	The bias, the y-intercept, and the inherent mood of a quiet alien

	How do we determine whether a classifier is good or bad? The error function
	How to compare classifiers? The error function

	How to find a good classifier? The perceptron algorithm
	The perceptron trick: A way to slightly improve the perceptron
	Repeating the perceptron trick many times: The perceptron algorithm
	Gradient descent
	Stochastic and batch gradient descent

	Coding the perceptron algorithm
	Coding the perceptron trick
	Coding the perceptron algorithm
	Coding the perceptron algorithm using Turi Create

	Applications of the perceptron algorithm
	Spam email filters
	Recommendation Systems
	Health care
	Computer vision

	Summary
	Exercises

	6 A continuous approach to splitting points: Logistic classifiers
	Logistic classifiers: A continuous version of perceptron classifiers
	A probability approach to classification: The sigmoid function
	The dataset and the predictions
	The error functions: Absolute, square, and log loss
	Comparing classifiers using the log loss

	How to find a good logistic classifier? The logistic regression algorithm
	The logistic trick: A way to slightly improve the continuous perceptron
	Repeating the logistic trick many times: The logistic regression algorithm
	Stochastic, mini-batch, and batch gradient descent

	Coding the logistic regression algorithm
	Coding the logistic regression algorithm by hand

	Real-life application: Classifying IMDB reviews with Turi Create
	Classifying into multiple classes: The softmax function
	Summary
	Exercises

	7 How do you measure classification models? Accuracy and its friends
	Accuracy: How often is my model correct?
	Two examples of models: Coronavirus and spam email
	A super effective yet super useless model

	How to fix the accuracy problem? Defining different types of errors and how to measure them
	False positives and false negatives: Which one is worse?
	Storing the correctly and incorrectly classified points in a table: The confusion matrix
	Recall: Among the positive examples, how many did we correctly classify?
	Precision: Among the examples we classified as positive, how many did we correctly classify?
	Combining recall and precision as a way to optimize both: The F-score
	Recall, precision, or F-scores: Which one should we use?

	A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve
	Sensitivity and specificity: Two new ways to evaluate our model
	The receiver operating characteristic (ROC) curve: A way to optimize sensitivity and specificity in
	A metric that tells us how good our model is: The AUC (area under the curve)
	How to make decisions using the ROC curve
	Recall is sensitivity, but precision and specificity are different

	Summary
	Exercises

	8 Using probability to its maximum: The naive Bayes model
	Sick or healthy? A story with Bayes’ theorem as the hero
	Prelude to Bayes’ theorem: The prior, the event, and the posterior

	Use case: Spam-detection model
	Finding the prior: The probability that any email is spam
	Finding the posterior: The probability that an email is spam, knowing that it contains a particular
	What the math just happened? Turning ratios into probabilities
	What about two words? The naive Bayes algorithm
	What about more than two words?

	Building a spam-detection model with real data
	Data preprocessing
	Finding the priors
	Finding the posteriors with Bayes’ theorem
	Implementing the naive Bayes algorithm
	Further work

	Summary
	Exercises

	9 Splitting data by asking questions: Decision trees
	The problem: We need to recommend apps to users according to what they are likely to download
	The solution: Building an app-recommendation system
	First step to build the model: Asking the best question
	Second step to build the model: Iterating
	Last step: When to stop building the tree and other hyperparameters
	The decision tree algorithm: How to build a decision tree and make predictions with it

	Beyond questions like yes/no
	Splitting the data using non-binary categorical features, such as dog/cat/bird
	Splitting the data using continuous features, such as age

	The graphical boundary of decision trees
	Using Scikit-Learn to build a decision tree

	Real-life application: Modeling student admissions with Scikit-Learn
	Setting hyperparameters in Scikit-Learn

	Decision trees for regression
	Applications
	Decision trees are widely used in health care
	Decision trees are useful in recommendation systems

	Summary
	Exercises

	10 Combining building blocks to gain more power: Neural networks
	Neural networks with an example: A more complicated alien planet
	Solution: If one line is not enough, use two lines to classify your dataset
	Why two lines? Is happiness not linear?
	Combining the outputs of perceptrons into another perceptron
	A graphical representation of perceptrons
	A graphical representation of neural networks
	The boundary of a neural network
	The general architecture of a fully connected neural network

	Training neural networks
	Error function: A way to measure how the neural network is performing
	Backpropagation: The key step in training the neural network
	Potential problems: From overfitting to vanishing gradients
	Techniques for training neural networks: Regularization and dropout
	Different activation functions: Hyperbolic tangent (tanh) and the rectified linear unit (ReLU)
	Neural networks with more than one output: The softmax function
	Hyperparameters

	Coding neural networks in Keras
	A graphical example in two dimensions
	Training a neural network for image recognition

	Neural networks for regression
	Other architectures for more complex datasets
	How neural networks see: Convolutional neural networks (CNN)
	How neural networks talk: Recurrent neural networks (RNN), gated recurrent units (GRU), and long sho
	How neural networks paint paintings: Generative adversarial networks (GAN)

	Summary
	Exercises

	11 Finding boundaries with style: Support vector machines and the kernel method
	Using a new error function to build better classifiers
	Classification error function: Trying to classify the points correctly
	Distance error function: Trying to separate our two lines as far apart as possible
	Adding the two error functions to obtain the error function
	Do we want our SVM to focus more on classification or distance? The C parameter can help us

	Coding support vector machines in Scikit-Learn
	Coding a simple SVM
	The C parameter

	Training SVMs with nonlinear boundaries: The kernel method
	Using polynomial equations to our benefit: The polynomial kernel
	Using bumps in higher dimensions to our benefit: The radial basis function (RBF) kernel
	Training an SVM with the RBF kernel
	Coding the kernel method

	Summary
	Exercises

	12 Combining models to maximize results: Ensemble learning
	With a little help from our friends
	Bagging: Joining some weak learners randomly to build a strong learner
	Fitting a random forest manually
	Training a random forest in Scikit-Learn

	AdaBoost: Joining weak learners in a clever way to build a strong learner
	A big picture of AdaBoost: Building the weak learners
	Combining the weak learners into a strong learner
	Coding AdaBoost in Scikit-Learn

	Gradient boosting: Using decision trees to build strong learners
	XGBoost: An extreme way to do gradient boosting
	XGBoost similarity score: A new and effective way to measure similarity in a set
	Building the weak learners
	Tree pruning: A way to reduce overfitting by simplifying the weak learners
	Making the predictions
	Training an XGBoost model in Python

	Applications of ensemble methods
	Summary
	Exercises

	13 Putting it all in practice: A real-life example of data engineering and machine learning
	The Titanic dataset
	The features of our dataset
	Using Pandas to load the dataset
	Using Pandas to study our dataset

	Cleaning up our dataset: Missing values and how to deal with them
	Dropping columns with missing data
	How to not lose the entire column: Filling in missing data

	Feature engineering: Transforming the features in our dataset before training the models
	Turning categorical data into numerical data: One-hot encoding
	Turning numerical data into categorical data (and why would we want to do this?): Binning
	Feature selection: Getting rid of unnecessary features

	Training our models
	Splitting the data into features and labels, and training and validation
	Training several models on our dataset
	Which model is better? Evaluating the models
	Testing the model

	Tuning the hyperparameters to find the best model: Grid search
	Using K-fold cross-validation to reuse our data as training and validation
	Summary
	Exercises

	Appendix A: Solutions to the exercises
	Chapter 2: Types of machine learning
	Exercise 2.1
	Exercise 2.2
	Exercise 2.3

	Chapter 3: Drawing a line close to our points: Linear regression
	Exercise 3.1
	Exercise 3.2
	Exercise 3.3
	Exercise 3.4

	Chapter 4: Optimizing the training process: Underfitting, overfitting, testing, and regularization
	Exercise 4.1
	Exercise 4.2

	Chapter 5: Using lines to split our points: The perceptron algorithm
	Exercise 5.1
	Exercise 5.2
	Exercise 5.3

	Chapter 6: A continuous approach to splitting points: Logistic classifiers
	Exercise 6.1
	Exercise 6.2
	Exercise 6.3

	Chapter 7: How do you measure classification models? Accuracy and its friends
	Exercise 7.1
	Exercise 7.2
	Exercise 7.3
	Exercise 7.4

	Chapter 8: Using probability to its maximum: The naive Bayes model
	Exercise 8.1
	Exercise 8.2
	Exercise 8.3

	Chapter 9: Splitting data by asking questions: Decision trees
	Exercise 9.1
	Exercise 9.2
	Exercise 9.3

	Chapter 10: Combining building blocks to gain more power: Neural networks
	Exercise 10.1
	Exercise 10.2
	Exercise 10.3

	Chapter 11: Finding boundaries with style: Support vector machines and the kernel method
	Exercise 11.1
	Exercise 11.2

	Chapter 12: Combining models to maximize results: Ensemble learning
	Exercise 12.1
	Exercise 12.2

	Chapter 13: Putting it all in practice: A real-life example of data engineering and machine learning
	Exercise 13.1

	Appendix B: The math behind gradient descent: Coming down a mountain using derivatives and slopes
	Using gradient descent to decrease functions
	Using gradient descent to train models
	Using gradient descent to train linear regression models
	Using gradient descent to train classification models
	Using gradient descent to train neural networks

	Using gradient descent for regularization
	Getting stuck on local minima: How it happens, and how we solve it

	Appendix C: References
	General references
	Courses
	Blogs and YouTube channels
	Books
	Chapter 1
	Videos

	Chapter 2
	Videos
	Books
	Courses

	Chapter 3
	Code
	Datasets
	Videos

	Chapter 4
	Code
	Videos

	Chapter 5
	Code
	Videos

	Chapter 6
	Code
	Datasets
	Videos

	Chapter 7
	Videos

	Chapter 8
	Code
	Datasets
	Visibility: Public Videos

	Chapter 9
	Code
	Datasets
	Videos
	Blog post

	Chapter 10
	Code
	Datasets
	Videos
	Books
	Courses
	Blog posts
	Tools

	Chapter 11
	Code
	Videos
	Blog posts

	Chapter 12
	Code
	Videos
	Articles and blog posts

	Chapter 13
	Code
	Datasets

	Graphics and image icons

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

